

Research Paper

ABSOLUTE-(p, r)-*-PARANORMALITY AND BLOCK MATRIX OPERATORS

ZAHRA MOAYYERIZADEH

ABSTRACT. In this paper, we introduce a new model of a block matrix operator $\mathcal{M}(\zeta,\eta)$ induced by two sequences ζ and η and characterize its absolute-(p, r)-*-paranormality. Next, we give examples of these operators to show that absolute-(p, r)-*-paranormal classes are distinct.

MSC(2010): 47B20; 47B38.

Keywords: Composition operator, Conditional expectation, Absolute-(p, r)-*-paranormal operators, Block matrix operators.

1. Introduction and preliminaries

Let \mathcal{H} be the infinite dimensional complex Hilbert space and $\mathcal{L}(\mathcal{H})$ be the algebra of all bounded linear operators on \mathcal{H} . Let T = U|T| be the canonical polar decomposition for $T \in \mathcal{L}(\mathcal{H})$. An operator T is said to be paranormal if $||Tx||^2 \leq ||T^2x||$, for any unit vector $x \in \mathcal{H}$. Further, T is said to be *-paranormal if $||T^*x||^2 \leq ||T^2x||$, for any unit vector $x \in \mathcal{H}$. An operator T is $\mathcal{A}(k^*)$ class operator if $(T^*|T|^{2k}T)^{\frac{1}{k+1}} \leq |T^*|^2$, for every k > 0. In the paper [5], there were introduced absolute-k-*-paranormal class of operators as follows: $||T|^kTx|| \geq ||T^*x||^{k+1}$, for $x \in \mathcal{H}, ||x|| = 1$ and for any k > 0. The $\mathcal{A}(k^*)$ class operators is included in the absolute-k-*-paranormal if $||T|^p U|T|^p x|| \geq ||T|^p U^* x||^2$, for all unit vectors $x \in \mathcal{H}$ and p > 0. Braha and Hoxha [1] introduced the absolute-(p, r)-*-paranormality which is a further generalization of both absolute-k-*-paranormal if $p > 0, r \geq 0$, an operator T is absolute-(p, r)-*-paranormal if

$$|||T|^{p}U|T|^{r}x||^{r} \ge |||T|^{r}U^{*}x||^{p+r},$$

for any unit vector $x \in \mathcal{H}$. Also, they introduced (p, r, q)-*-paranormal operators. For each $p > 0, r \ge 0$ and q > 0, an operator T is (p, r, q)-*-paranormal if $|||T|^p U|T|^r x||^{\frac{1}{q}} ||x||^p \ge |||T||^{\frac{p+r}{q}} U^* x||$, for all unit vectors $x \in \mathcal{H}$.

Let (X, Σ, μ) be a complete σ -finite measure space and let \mathcal{A} be a sub- σ -finite algebra of Σ . We use the notation $L^2(\mathcal{A})$ for $L^2(X, \mathcal{A}, \mu|_{\mathcal{A}})$ and henceforth we write μ in place of $\mu|_{\mathcal{A}}$. All comparisons between two functions or two sets are to be interpreted as holding up to a μ -null set. The support of a measurable function f is defined as $S(f) = \{x \in X; f(x) \neq 0\}$. We denote the vector space of all equivalence classes of almost everywhere finite valued measurable

Date: Received: June 11, 2021, Accepted: August 22, 2021.

F1. MOAYYERIZADEH

functions on X by $L^0(\Sigma)$. Let $\varphi : X \to X$ be a transformation such that $\varphi^{-1}(\Sigma) \subseteq \Sigma$ and $\mu \circ \varphi^{-1} \ll \mu$. It is assumed that the Radon-Nikodym derivative $h = d\mu \circ \varphi^{-1}/d\mu$ is finitevalued or equivalently $(X, \varphi^{-1}(\Sigma), \mu)$ is σ -finite. The composition operator C_{φ} acting on $L^2(\Sigma) := L^2(X, \Sigma, \mu)$ is defined by $C_{\varphi} = f \circ \varphi$. The condition $h \in L^{\infty}(\Sigma)$ assures that C_{φ} is bounded. For any non-negative Σ -measurable function f as well as for any $f \in L^p(\Sigma)$ by the Radon-Nikodym theorem, there exists a unique \mathcal{A} -measurable function E(f) such that

$$\int_{A} Efd\mu = \int_{A} fd\mu, \text{ for all } A \in \mathcal{A}.$$

Hence we obtain a operator E from $L^p(\Sigma)$ to $L^p(\mathcal{A})$ which is conditional expectation operator associated with the σ -algebra \mathcal{A} . This operator will play major role in our work. For further information on conditional type operators, see [6, 10]. Composition operators as an extension of shift operators are a good tool for separating weak paranormal classes. Classic seminormal composition operators have been extensively studied by Harrington and Whitley [5], Lambert [8], Singh [11], Campbell [3] and many other mathematicians.

In this paper, we will restrict ourselves to the Hilbert space $\ell^2(\mathbb{N})$ of complex-valued functions on the natural numbers. The space of $\ell^2(\mathbb{N})$ can also be denoted by $L^2(\mathbb{N}, 2^{\mathbb{N}}, \mu)$, where $2^{\mathbb{N}}$ is the power set of natural numbers and μ is a measure on $2^{\mathbb{N}}$ define by $\mu(\{n\}) = m_n$ where $\{m_n\}_{n=1}^{\infty}$ be a sequence of positive real numbers.

Let $\{e_n\}_{n\in\mathbb{N}}$ be an orthonormal basis for $\ell^2(\mathbb{N})$, and $f = \sum_{n\in\mathbb{N}} f_n e_n$ be in $\ell^2(\mathbb{N})$. Then some direct computations show that for each $k \in \mathbb{N}$:

(1.1)
$$h(k) = \frac{1}{m_k} \sum_{j \in \varphi^{-1}(k)} m_j, \qquad E(f)(k) = \frac{\sum_{j \in \varphi^{-1}(\varphi(k))} f_j m_j}{\sum_{j \in \varphi^{-1}(\varphi(k))} m_j};$$

In [4], Exner, Jung and Lee introduced a model of block matrix operator and by using composition operators, characterize its *p*-hyponormality. In this paper we define a new block matrix on $\ell^2(\mathbb{N})$. Next, we obtain the (p, r, q)-*-paranormality and the absolute-(p, r)-* paranormality criteria of these type block matrices. Finally, some examples presented which show that block matrix operators can distinguish between these classes.

2. Characterizations

Let $\zeta := \{\zeta_i^n\}_{\substack{1 \le i \le t \\ 0 \le n < \infty}}$ and $\eta := \{\eta_j^n\}_{\substack{1 \le j \le s \\ 0 \le n < \infty}}$ be bounded sequences of positive real numbers. Let $\mathcal{M}(\zeta, \eta) := [E_{ij}]_{0 \le i,j < \infty}$ be a block matrix operator whose blocks are $(t + s) \times (t + 1)$ matrices such that $E_{ij} = 0, i \ne j$, and

(2.1)
$$E_n := E_{nn} = \begin{bmatrix} \zeta_1^{(n)} & & O \\ & \ddots & & \\ & & \zeta_t^{(n)} & \\ & & & \eta_1^{(n)} \\ & & & & \eta_s^{(n)} \end{bmatrix}.$$

where other entries are 0 except ζ_*^n and η_*^n in (2.1). It is clear that block matrix \mathcal{M} is bounded.

Definition 2.1. For two bounded sequences $\zeta := \{\zeta_i^n\}_{\substack{1 \le i \le t \\ 0 \le n < \infty}}$ and $\eta := \{\eta_j^n\}_{\substack{1 \le j \le s \\ 0 \le n < \infty}}$, the block matrix operator $\mathcal{M} := \mathcal{M}(\zeta, \eta)$ satisfying in (2.1) is called a block matrix operator with weight sequence (ζ, η) .

Let \mathcal{M} be a block matrix operator with weight sequence (ζ, η) and let $\mathcal{W}_{(\zeta, \eta)}$ be its corresponding operator on ℓ^2 relative to some orthonormal basis. Then $\mathcal{W}_{(\zeta, \eta)}$ may provide a repetitive form; for example t = 2, s = 4 and $\zeta_i^{(n)} = \eta_j^{(n)} = 1$ for all $i, j, n \in \mathbb{N}$, then the block matrix operator with (ζ, η) is unitarily equivalent to the following operator $\mathcal{W}_{\zeta,\eta}$ on ℓ^2 defined by

We put $X = \mathbb{N}_0$ and the power set $\mathcal{P}(X)$ of X for the σ -algebra Σ . Define a non-singular measurable transformation φ on \mathbb{N}_0 such that

(2.2)
$$\varphi^{-1}(k(t+1)+t) = \{k(t+s)+i-1+t: 1 \le i \le s\}, \quad k = 0, 1, 2, ..., \\ \varphi^{-1}(k(t+1)+i-1) = k(t+s)+i-1, \quad 1 \le i \le t, \quad k = 0, 1, 2, ... \end{cases}$$

If we choose s and t in such a way that their sum is always an even number, then we have

(2.3)
$$\varphi^{2}(n) = \begin{cases} k(t+1)+t & n = k(t+s)+i+t-1, 1 \le i \le s \quad k \in \mathbb{N}_{0}; \\ k(t+1)+t & n = k(t+s)+i-1, 1 \le i \le t, k \in \mathbb{N}_{0}, k \text{ is odd}; \\ k(t+1)+i-1 & n = k(t+s)+i-1, 1 \le i \le t, k \in \mathbb{N}_{0}, k \text{ is even}. \end{cases}$$

Throughout this paper, we assume that t + s is even. We write $m(\{i\}) := m_i, i \in \mathbb{N}_0$, for the underlying point mass measure on X, and we suppose that each m_i is strictly positive.

Proposition 2.2. The composition operator C_{φ} on ℓ^2 defined by $C_{\varphi}f = f \circ \varphi$ is unitarily equivalent to the block matrix operator $\mathcal{M}(\zeta, \eta)$, where $\zeta := \{\zeta_i^n\}_{\substack{1 \le i \le t \\ 0 \le n < \infty}}$ and $\eta := \{\eta_j^n\}_{\substack{1 \le j \le s \\ 0 \le n < \infty}}$

$$\begin{aligned} \zeta_i^{(n)} &= \sqrt{\frac{m_{n(t+s)+i-1}}{m_{n(t+1)+i-1}}} \quad (1 \le i \le t), \\ \eta_j^{(n)} &= \sqrt{\frac{m_{n(t+s)+j+t-1}}{m_{n(t+1)+t}}} \quad (1 \le j \le s). \end{aligned}$$

Proof. Let $e_i = \frac{1}{\sqrt{m_i}}\chi_i$ $(i \in \mathbb{N}_0)$. Then $\{e_i\}_{i \in \mathbb{N}_0}$ is an orthonormal basis for ℓ^2 . We have

$$C_{\varphi}e_j = e_j \circ \varphi = \frac{1}{\sqrt{m_j}}\chi_{\varphi^{-1}\{j\}} = \frac{1}{\sqrt{m_j}}\sum_{i\in\varphi^{-1}(j)}e_i\sqrt{m_i}.$$

Then, for each $k \in \mathbb{N}_0$, we have

$$C_{\varphi}e_{j} = \begin{cases} \sum_{1 \leq i \leq s} \sqrt{\frac{m_{k(t+s)+i-1+t}}{m_{k(t+1)+t}}} e_{k(t+s)+i-1+t} & j = k(t+1)+t; \\ \sqrt{\frac{m_{k(t+s)+i-1}}{m_{k(t+1)+i-1}}} e_{k(t+s)+i-1} & j = k(t+1)+i-1, 1 \leq i \leq t. \end{cases}$$

Now, we set weight sequences $\zeta := \{\zeta_i^n\}_{\substack{1 \leq i \leq t \\ 0 \leq n < \infty}}$ and $\eta := \{\eta_j^n\}_{\substack{1 \leq j \leq s \\ 0 \leq n < \infty}}$, where

$$\zeta_i^{(n)} = \sqrt{\frac{m_{n(t+s)+i-1}}{m_{n(t+1)+i-1}}}, \quad 1 \le i \le t, 0 \le n < \infty,$$

and

$$\eta_j^{(n)} = \sqrt{\frac{m_{n(t+s)+j+t-1}}{m_{n(t+1)+t}}} \quad 1 \le j \le s, 0 \le n < \infty.$$

Therefore, it is easy to check that C_{φ} is unitarily equivalent to the block matrix operator $\mathcal{M}(\zeta,\eta)$ with weight sequence (ζ,η) .

Remark 2.3. In Proposition 2.2, put t = 2 and s = 4. Then, $C_{\varphi}e_0 = \sqrt{\frac{m_0}{m_0}}e_0$, $C_{\varphi}e_1 = \sqrt{\frac{m_1}{m_1}}e_1$, $C_{\varphi}e_2 = \sqrt{\frac{m_2}{m_2}}e_2 + \sqrt{\frac{m_3}{m_2}}e_3 + \sqrt{\frac{m_4}{m_2}}e_4 + \sqrt{\frac{m_5}{m_2}}e_5$ and \cdots . Therefore, in this case, C_{φ} is equivalent to the block matrix

(2.4)
$$\begin{bmatrix} E_1 & & & \\ & E_2 & & \\ & & E_3 & & \\ & & & E_4 & \\ & & \ddots & & \end{bmatrix}$$
 where $E_1 := E_{11} = \begin{bmatrix} \sqrt{\frac{m_0}{m_0}} & 0 & 0 \\ 0 & \sqrt{\frac{m_1}{m_1}} & 0 \\ 0 & 0 & \sqrt{\frac{m_2}{m_2}} \\ 0 & 0 & \sqrt{\frac{m_2}{m_2}} \\ 0 & 0 & \sqrt{\frac{m_3}{m_2}} \\ 0 & 0 & \sqrt{\frac{m_4}{m_2}} \\ 0 & 0 & \sqrt{\frac{m_5}{m_2}} \end{bmatrix}$

Proposition 2.4. [4] Let $\mathcal{M}(\zeta, \eta)$ be a block matrix operator with weight sequence (ζ, η) , where $\zeta := \{\zeta_i^n\}_{\substack{1 \leq i \leq r \\ 0 \leq n < \infty}}$ and $\eta := \{\eta_j^n\}_{\substack{1 \leq j \leq s \\ 0 \leq n < \infty}}$. Then there exists a measurable transformation φ on a σ -finite measure space $(\mathbb{N}_0, \mathcal{P}(\mathbb{N}_0), m)$ such that $\mathcal{M}(\zeta, \eta)$ is unitarily equivalent to the composition operator C_{φ} on ℓ^2 .

Proposition 2.5. [7] The following are equivalent:

(i) C_{φ} is absolute-(p, r)-*-paranormal.

(*ii*)
$$(h^r \circ \varphi) E(h^p) \ge h^{p+r} \circ \varphi^2$$
 on $S(h)$

(iii) C_{φ} is (p, r, q)-*-paranormal.

Theorem 2.6. Let φ be a non-singular measurable transformation on ℓ^2 as in (2.2) and let $p > 0, r \ge 0$ and q > 0. Then the following assertions are equivalent

(i) C_{φ} is absolute-(p, r)-*-paranormal on ℓ^2 ;

(ii) C_{φ} is (p, r, q)-*-paranormal.

(iii) the block matrix operator $\mathcal{M}(\zeta, \eta)$ as in Proposition 2.2 is absolute-(p, r)-*-paranorma and (p, r, q)-*-paranormal.

 $(iv) \ (h^r \circ \varphi)(n) E(h^p)(n) \ge h^{p+r} \circ \varphi^2(n) \ on \ S(h).$

(v) the following inequality for $n \in \mathbb{N}_0$, holds

(2.5)
$$\left(\frac{m(\varphi^{-1}(\varphi(n)))}{m_{\varphi(n)}}\right)^r \frac{1}{m(\varphi^{-1}(\varphi(n)))} \sum_{l \in \varphi^{-1}(\varphi(n))} \frac{m(\varphi^{-1}(j))^p}{m_j^p} m_j$$
$$\geq \left(\frac{m(\varphi^{-1}(\varphi^2(n)))}{m_{\varphi^2(n)}}\right)^{p+r},$$

Proof. Because of Propositions 2.4 and 2.5 we have (i), (ii), (iii) and (iv) are equivalent. Also, by a similar argument as in the proof of [Theorem 2.1, [4]], it is easy to see that (iv) and (v) are equivalent. \Box

The conditions above simplify considerably if we specialize to the case of a repeated block Let $\mathcal{M}(\zeta, \eta)$ be a block matrix operator where $\zeta := \{\zeta_i^n\}_{\substack{1 \le i \le t \\ 0 \le n < \infty}}$ and $\eta := \{\eta_j^n\}_{\substack{1 \le j \le s \\ 0 \le n < \infty}}$ as follows:

(2.6)

$$\mathcal{M}(\zeta,\eta): E \equiv E_1 \equiv E_1 = E_2 = \cdots$$

$$\zeta: \zeta_i^{(n)} = \zeta_i, n \in \mathbb{N}_0, 1 \le i \le t;$$

$$\eta: \eta_i^{(n)} = \eta_j, n \in \mathbb{N}_0, 1 \le j \le s.$$

For any $n \in \mathbb{N}_0$, let i_n denote the solution to the conditions $1 \leq i_n \leq t$ and $n = k_1(t+1) + i_n - 1$ for some $k_1 \in \mathbb{N}_0$. Similarly, let v_n satisfy $1 \leq v_n \leq s$ and $n = k_2(t+s) + v_n - 1 + t$ for some $k_2 \in \mathbb{N}_0$.

Theorem 2.7. Let $\mathcal{M}(\zeta, \eta)$ be as in (2.6). Then the block matrix operator $\mathcal{M}(\zeta, \eta)$ is absolute-(p, r)-*-paranormal if and only if the following three conditions hold:

(i) if n = k(t+s) + i - 1 + t for $1 \le i \le s$, then for all $1 \le i_j \le t$ and $1 \le v_j \le s$ we have

(2.7)
$$\left(\sum_{1\leq i\leq s}\eta_i^2\right)^r \sum_{\substack{j\in\varphi^{-1}(\varphi(n))\\j\equiv t \bmod(t+1)}} \left(\sum_{1\leq i\leq s}\eta_i^2\right)^p \left(\frac{\eta_{v_j}^2}{\sum_{1\leq i\leq s}\eta_i^2}\right) + \sum_{\substack{j\in\varphi^{-1}(\varphi(n))\\j\not\equiv t \bmod(t+1)}} (\zeta_{i_j})^{2p} \left(\frac{\eta_{v_j}^2}{\sum_{1\leq i\leq s}\eta_i^2}\right) \ge \left(\sum_{1\leq i\leq s}\eta_i^2\right)^{p+r}$$

(ii) if n = k(t+s) + q - 1 and k is even, for $1 \le q \le t$, we have

$$\begin{array}{ll} (ii-a) & \zeta_q^{2r} (\sum_{1 \le i \le s} \eta_i^2)^p \ge (\zeta_q^2)^{p+r} & n \equiv t \mod(t+1) \\ (ii-b) & \zeta_q^{2r} \zeta_{i_n}^{2p} \ge \zeta_q^{2(p+r)} & n \equiv i_n-1 \mod(t+1) \ and \ 1 \le i_n \le t. \end{array}$$

(iii) if n = k(r+s) + q - 1 and k is odd, then for $1 \le q \le t$ we have

$$\begin{array}{ll} (ii-a) & \zeta_q^{2r} (\sum_{1 \le i \le s} \eta_i^2)^p \ge (\sum_{1 \le v_n \le s} \eta_{v_n}^2)^{p+r} & n \equiv t \mod (t+1) \\ (ii-b) & \zeta_q^{2r} \zeta_{i_n}^{2p} \ge (\sum_{1 \le v_n \le s} \eta_{v_n}^2)^{p+r} & n \equiv i_n - 1 \mod (t+1) \ with \ 1 \le i_n \le t \end{array}$$

Proof. First, we proof (i): since n = k(t+s) + i - 1 + t for $1 \le i \le s$. Thus $\varphi(n) = k(t+1) + t$ and $\varphi^{-1}(\varphi(n)) = \{k(t+s) + i - 1 + t : 1 \le i \le s\}$. By using Proposition 2.2, we have

$$m(\varphi^{-1}(\varphi(n))) = \sum_{1 \le i \le s} m_{k(t+s)+i-1+t} = \sum_{1 \le i \le s} (\eta_i^{(k)})^2 m_{k(t+1)+t},$$

since for any $k \in \mathbb{N}_0$, $\eta_i^{(k)} = \eta_i$. So $m(\varphi^{-1}(\varphi(n))) = \sum_{1 \le i \le s} \eta_i^2 m_{k(t+1)+t}$. Also, since in this case $\varphi^2(n) = \varphi(n)$, therefore we have

$$\left(\frac{m(\varphi^{-1}(\varphi(n)))}{m_{\varphi(n)}}\right) = \left(\frac{m(\varphi^{-1}(\varphi^2(n)))}{m_{\varphi^2(n)}}\right) = \left(\frac{\sum_{1 \le i \le s} \eta_i^2 m_{\varphi(n)}}{m_{\varphi(n)}}\right) = \sum_{1 \le i \le s} \eta_i^2.$$

Now, we will calculate $\frac{1}{m(\varphi^{-1}(\varphi(n)))} \sum_{j \in \varphi^{-1}(\varphi(n))} \frac{m(\varphi^{-1}(j))^p}{m_j^p} m_j$. By using Proposition 2.2, we deduce that

$$\frac{m_j}{m(\varphi^{-1}(\varphi(n)))} = \frac{\eta_{v_j}^2 m_{k(t+1)+t}}{\sum_{1 \le i \le s} \eta_i^2 m_{k(t+1)+t}} = \frac{\eta_{v_j}^2}{\sum_{1 \le i \le s} \eta_i^2}, \quad 1 \le v_j \le s$$

In sequel, we compute $\left(\frac{m(\varphi^{-1}(j))}{m_j}\right)^p$ for $j \in \varphi^{-1}(\varphi(n))$. To do so we consider two subcases.

Case1a: $j = k_1(t+1) + t$, $k_1 \in \mathbb{N}_0$, then we have $\varphi^{-1}(j) = \{k_1(t+s) + i - 1 + t : 1 \le i \le s\}$. By Proposition 2.2, we have

$$\left(\frac{m(\varphi^{-1}(j))}{m_j}\right)^p = \left(\frac{\sum_{1 \le i \le s} \eta_i^2 m_{k_1(t+1)+t}}{m_{k_1(t+1)+t}}\right)^p = \left(\sum_{1 \le i \le s} \eta_i^2\right)^p.$$

Case1b: $j = k_1(t+1) + i_j - 1$ for $k_1 \in \mathbb{N}_0$ and $1 \leq i_j \leq t$. In this case we get that $\varphi^{-1}(j) = k_1(t+s) + i_j - 1$: $1 \leq i_j \leq t$, so Proposition 2.2 implies that

$$\left(\frac{m(\varphi^{-1}(j))}{m_j}\right)^p = \left(\zeta_{i_j}^2\right)^p.$$

Therefore, for n = k(t+s) + i - 1 + t and $1 \le i \le t$, we conclude that (2.5) is equivalent to (2.7).

Now, we proof (ii): In this case n = k(t+s) + q - 1 for $1 \le q \le t$ and k is even. By (2.2) and (2.3), it is easy to see that $\varphi(n) = \varphi^2(n) = k(t+1) + q - 1$ and $\varphi^{-1}(\varphi(n)) = \varphi^{-1}(\varphi^2(n)) = n$,

62

by using Proposition 2.2, we get that

$$\frac{m(\varphi^{-1}(\varphi(n)))}{m(\varphi(n))} = \frac{m(\varphi^{-1}(\varphi^{2}(n)))}{m(\varphi^{2}(n))} = \frac{m_{k(t+s)+q-1}}{m_{k(t+1)+q-1}} = \frac{\zeta_{q}^{2}m_{k(t+1)+q-1}}{m_{k(t+1)+q-1}} = \zeta_{q}^{2},$$

Since $\varphi^{-1}(\varphi(n)) = n$ for n = k(t+s) + q - 1, obviously $\frac{m(\varphi^{-1}(\varphi(n)))}{m_j} = 1$ for $j \in \varphi^{-1}(\varphi(n))$. Now we consider two subcases for computations of $\left(\frac{m(\varphi^{-1}(j))}{m_j}\right)^p, j \in \varphi^{-1}(\varphi(n))$.

Case2a: $j(=n) = k_2(t+1) + t$ for some $k_2 \in \mathbb{N}_0$. Hence, we have $\varphi^{-1}(j) = \{k_2(t+s) + i - 1 + t : 1 \le i \le s\}$. Hence

$$\frac{m(\varphi^{-1}(j))}{m_j} = \frac{\sum_{1 \le i \le s} \eta_i^2 m_{k_2(t+1)+t}}{m_{k_2(t+1)+t}} = \sum_{1 \le i \le s} \eta_i^2.$$

Case2b: $j(=n) = k_2(t+1) + i_n - 1$ for some $k_2 \in \mathbb{N}_0$, with $1 \leq i_n \leq t$. Obviously $\varphi^{-1}(j) = \{k_2(t+s) + i_n - 1 : 1 \leq i_n \leq t\}$, consequently

$$\frac{m(\varphi^{-1}(j))}{m_j} = \frac{\zeta_{i_n}^2 m_{k_2(t+1)+v_n-1}}{m_{k_2(t+1)+v_n-1}} = \zeta_{i_n}^2$$

Thus we get that in this case (2.5) is equivalent to

$$\begin{cases} \zeta_q^{2r} \left(\sum_{1 \le i \le s} \eta_i^2 \right)^p \ge \zeta_q^{2(p+r)} & n \equiv t, \mod(t+1), \\ \zeta_q^{2r} \zeta_{i_n}^{2p} \ge \zeta_q^{2(p+r)} & n \equiv i_n - 1, \mod(t+1). \end{cases}$$

Finally, we proof (iii): n = k(t+s) + q - 1 for $1 \le q \le t$ and k is odd. By (2.2) and (2.3), we have $\varphi(n) = k(t+1) + q - 1$, $\varphi^{-1}(\varphi(n)) = n$, $\varphi^2(n) = k(t+1) + t$ and $\varphi^{-1}(\varphi^2(n)) = \{k(t+s) + v_n - 1 + t : 1 \le v_n \le s\}$ by using Proposition 2.2, we get that

$$\frac{m(\varphi^{-1}(\varphi(n)))}{m(\varphi(n))} = \zeta_q^2, \ \frac{m(\varphi^{-1}(\varphi^2(n)))}{m(\varphi^2(n))} = \sum_{1 \le v_n \le s} \eta_{v_n}^2$$

Also, by a similar argument as in the proof of (ii), we have

$$\frac{m(\varphi^{-1}(j))}{m_j} = \begin{cases} \sum_{1 \le i \le t} \eta_i^2, & n \equiv t, \mod(t+1), \\ \\ \zeta_{i_n}^2 & n \equiv i_n - 1, \mod(t+1) \end{cases}$$

Consequently, for n = k(t+s) + q - 1 where k is odd and $1 \le q \le t$, we get that (2.5) is equivalent to

$$\begin{cases} \zeta_q^{2r} \left(\sum_{1 \le i \le t} \eta_i^2 \right)^p \ge \left(\sum_{1 \le v_n \le s} \eta_{v_n}^2 \right)^{p+r} & n \equiv t, \mod(t+1), \\ \zeta_q^{2r} \zeta_{i_n}^{2p} \ge \left(\sum_{1 \le v_n \le s} \eta_{v_n}^2 \right)^{p+r} & n \equiv i_n - 1, \mod(t+1). \end{cases}$$

Example 2.8. Let

$$E := \begin{bmatrix} c & 0 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{bmatrix} \quad \text{and} \quad \mathcal{M} := \begin{bmatrix} E & & \\ & E & \\ & & \ddots \end{bmatrix}.$$

Note that c is a fixed positive real number. Then some direct computations show that the conditions for \mathcal{M} to be absolute (p, r)-*-paranormal in Theorem 2.7 is equivalent to the following condition:

(2.8)
$$c^{2p} \ge 3^p \text{ and } c^{2(p+r)} \ge 3^{p+r}$$

Then by using (2.8) we can find c such that \mathcal{M} is absolute-(2,3)-*-paranormal but it is not absolute-(2,4)-*-paranormal. Namely, put c = 1.8

Example 2.9. Let

$$F := \begin{bmatrix} a & 0 & 0 & 0 \\ 0 & b & 0 & 0 \\ 0 & 0 & c & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad \text{and} \quad \mathcal{M} := \begin{bmatrix} F & & \\ & F & \\ & & \ddots \end{bmatrix} .$$

where a, b, c are fixed positive real number. Hence, by using Theorem 2.7, it is easy to see that \mathcal{M} is absolute-(p, r)-*-paranormal if and only if the following conditions hold:

(2.9)
$$16^{p} + 2a^{2} + b^{2} + 9c^{2} \ge 16^{p+1};$$
$$a^{2(p+r)} \ge 16^{p+r};$$
$$b^{2(p+r)} \ge 16^{p+r};$$
$$c^{2(p+r)} \ge 16^{p+r}.$$

Therefore by using (2.9), we can find a, b and c such that \mathcal{M} is absolute-(3, 4)-*-paranormal, but it is not absolute-(1, 3)-*-paranormal. Put a = 5, b = 6 and c = 4, so this yields that the classes of absolute-(p, r)-*-paranormal operators are distinct for p > 0 and $r \ge 0$. Also, by Theorem 2.6 we deduce that this block matrix operator can separate the classes of (p, r, q)-*-paranormal operators for p > 0, $r \ge 0$ and q > 0.

References

- N. Braha and I. Hoxha, (p, r, q)-*-paranormal operators and Absolute-(p, r)-*-paranormal operators, J. Math. Anal, 3(2013), 14-22.
- [2] C. Burnap, I. Jung and A. Lambert, Separating partial normality classes with composition operators, J. Operator Theory, 53 (2005), 381-397.
- [3] J. Campbell and W. Hornor, Seminormal composition operators, J. Operator Theory 29 (1993), 323-343.
- [4] G. Exner, I. Jung and M. Lee, Block matrix operators and weak hyponormalities, J. Integr. equ. oper. theory 65 (2009), 345-362.
- [5] D. Harrington and R. Whitley, Seminormal composition operators, J. Operator Theory, 11 (1984), 125-135.
- [6] J. Herron, Weighted Conditional Expectation Operators, Oper. Matrices, 5(2011), 107-118.

- [7] H. Emamalipour, M.R. Jabbarzadeh and M. Sohrabi Chegeni, Some weak p-Hyponormality classes of weighted composition operators, Filomat, 9(2017), 2643-2656.
- [8] A. Lambert, Hyponormal composition operators, Bull London Math Soc 18 (1986), 395-400.
- S. Panayappan and A. Radharamani, A note on p-*-paranormal operators and absolute k-*-paranormal operators, Int. J. Math. Anal. 2(2008), no.25-28, 1257-1261.
- [10] M. M. Rao, Conditional measure and applications, Marcel Dekker, New York, 1993.
- [11] R. K. Singh and J. S. Manhas, Composition Operators on Function Spaces, North Holland Math. Studies 179, Amsterdam, 1993.

(Zahra Moayyerizadeh) DEPARTMENT OF MATHEMATICS, LORESTAN UNIVERSITY, KHORRAMABAD, IRAN. *Email address:* moayerizadeh.za@lu.ac.ir