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ABSOLUTE-(p,r)-~PARANORMALITY AND BLOCK MATRIX
OPERATORS
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ABSTRACT. In this paper, we introduce a new model of a block matrix operator M((,n)
induced by two sequences ¢ and 7 and characterize its absolute-(p, r)-*-paranormality. Next,
we give examples of these operators to show that absolute-(p, r)-*-paranormal classes are
distinct.
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1. Introduction and preliminaries

Let H be the infinite dimensional complex Hilbert space and L(H) be the algebra of all
bounded linear operators on H. Let T' = U|T| be the canonical polar decomposition for
T € L(H). An operator T is said to be paranormal if | Tx||? < ||T%x||, for any unit vector
x € H. Further, T is said to be x-paranormal if | T*z||? < ||T?x]|, for any unit vector
x € H. An operator T is A(k*) class operator if (T*|T|2kT)k7i1 < |T*|?, for every k > 0.
In the paper [5], there were introduced absolute-k-*-paranormal class of operators as follows:
I T|FTz|| > |T*x||*+!, for 2 € H,|jz|| = 1 and for any k > 0. The A(k*) class operators is
included in the absolute-k-*-paranormal operators for any k > 0 (see Theorem 2.4 in [9]). An
operator T is said to be p-*-paranormal if |||T|PU|T|Pz| > |||T|PU*z|?, for all unit vectors
x € H and p > 0. Braha and Hoxha [!] introduced the absolute-(p, r)-*-paranormality which
is a further generalization of both absolute-k-x-paranormality and p-x-paranormality. For
each p > 0, r > 0, an operator T is absolute-(p, r)-*-paranormal if

TPUIT | = T U™ 2|7,
for any unit vector x € H. Also, they introduced (p,r, q)-*-paranormal operators. For each
1
p > 0,r >0 and g > 0, an operator T is (p,r,q)-*-paranormal if |||T|PU|T| x| |z|P >

+r
H]T\pTU*xH, for all unit vectors x € H.

Let (X, X, 1) be a complete o-finite measure space and let A be a sub-o-finite algebra of X.
We use the notation L?(A) for L?(X, A, yy,) and henceforth we write y in place of . All
comparisons between two functions or two sets are to be interpreted as holding up to a p-null
set. The support of a measurable function f is defined as S(f) = {z € X; f(z) # 0}. We
denote the vector space of all equivalence classes of almost everywhere finite valued measurable
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58 F1. MOAYYERIZADEH

functions on X by L°(X). Let ¢ : X — X be a transformation such that ¢~1(X) C ¥ and
po ot < p. It is assumed that the Radon-Nikodym derivative h = du o ¢~ /dy is finite-
valued or equivalently (X, '(X),u) is o-finite. The composition operator C, acting on
LX(X) == L*(X, 3, u) is defined by C, = f o ¢. The condition h € L>(X) assures that C,, is
bounded. For any non-negative ¥-measurable function f as well as for any f € LP(X) by the
Radon-Nikodym theorem, there exists a unique A-measurable function E(f) such that

/Efd,u,—/fd,u, forall A € A.
A A

Hence we obtain a operator E from LP(X) to LP(.A) which is conditional expectation operator
associated with the g-algebra A. This operator will play major role in our work. For further
information on conditional type operators, see [0, 10]. Composition operators as an extension
of shift operators are a good tool for separating weak paranormal classes. Classic seminormal
composition operators have been extensively studied by Harrington and Whitley [5], Lambert
[8], Singh [11], Campbell [3] and many other mathematicians.

In this paper, we will restrict ourselves to the Hilbert space ¢?(N) of complex-valued func-
tions on the natural numbers. The space of £2(N) can also be denoted by L*(N, 2", 1), where
2V is the power set of natural numbers and g is a measure on 2N define by u({n}) = m,
where {m,}>2, be a sequance of positive real numbers.

Let {e,}nen be an orthonormal basis for £2(N), and f = 3", .y fnen be in £2(N). Then some
direct computations show that for each k € N:
> fimy

1 jep~(p(k))
(1.1) hky=— > my,  E(f)(k) = ;
Mty >, omy

j€p~L(p(k))

In [1], Exner, Jung and Lee introduced a model of block matrix operator and by using
composition operators, characterize its p-hyponormality. In this paper we define a new block
matrix on £2(N). Next, we obtain the (p,r, ¢)-*-paranormality and the absolute-(p, )-* para-
normality criteria of these type block matrices. Finally, some examples presented which show
that block matrix operators can distinguish between these classes.

2. Characterizations

Let ¢ :={(""} 1<i<t and n:= {nJ"} 1<j<s be bounded sequences of positive real numbers.
0<n<oo 0<n<oo
Let M(¢,n) = [Eijlo<ij<co be a block matrix operator whose blocks are (t 4+ s) x (t + 1)

matrices such that E;; = 0,7 # j, and

¢ 0]
(2.1) E,:=E,, = t
(n)
YA
0] :
i "
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where other entries are 0 except (' and 7} in (2.1). It is clear that block matrix M is
bounded.

Definition 2.1. For two bounded sequences ¢ := {(/'} 1<i<¢ andn:= {n;l} 1<j<s , the block

0<n<oo 0<n<oo

matrix operator M := M((,n) satisfying in (2.1) is called a block matrix operator with
weight sequence (¢, 7).

Let M be a block matrix operator with weight sequence (¢,7) and let W(,n) be its
corresponding operator on ¢2 relative to some orthonormal basis. Then W, 7) may provide

a repetitive form; for example t = 2, s = 4 and (i(n) = 7]](.”) =1 for all 4,j,n € N, then the

block matrix operator with (¢, n) is unitarily equivalent to the following operator W, on 0
defined by

We (a1, X2, 3, %4, ...) = (21, T2, T3, T3, T3, T3, T4, L5, L6, L65 L6 L6 L7, TS, ---)-
———— ——— —
(4) (4)

We put X = Ny and the power set P(X) of X for the o-algebra ¥. Define a non-singular
measurable transformation ¢ on Ny such that

(2.2) e M EE+) +t)={k(t+s)+i—1+t:1<i<s}, k=0,1,2,..,
e M Et+1)+i—1)=k(t+s)+i—1, 1<i<t, k=012, ..
If we choose s and ¢ in such a way that their sum is always an even number, then we have

(k(t+ 1)+t n="k(t+s) +i+t—1,1<i<s keNy

(2.3) ©?(n) = k(t+1)+t n=k(t+s)+i—1,1<i<tkecNy, kisodd;

(k(t+1)+i—1 n=k(t+s)+i—11<i<tkeNy, kiseven.

Throughout this paper, we assume that ¢ + s is even. We write m({i}) := m;,i € Ny, for the
underlying point mass measure on X, and we suppose that each m; is strictly positive.

Proposition 2.2. The composition operator C, on 02 defined by Cof = f o is unitarily

equivalent to the block matriz operator M((,n), where ¢ := {(I'} 1<i<t and n:= {77;‘} 1<j<s
0§7n<700 0<n<oo

and for each n € Ny

C,(") - Man(t+s)+i-1 (1 <i< t)
‘ M (t41)+i—1 -
(n) My (t4s)+j+t—1 .
L My (t+1)+t ( )

Proof. Let e; = =x; (i € Ny). Then {e; };en, is an orthonormal basis for £2. We have
Vmi 0

1 1

\/m—jxso‘l{j}:\/m—j Z iy imi.

i€p=1(4)

Cpej =e€jop =
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Then, for each k£ € Ny, we have

m i—
Z Mek(ﬁs)ﬂAH J=kt+1)+¢
1<i<s ME(t+1)+t

[T (t4s)+i—1 . . .
m@k(t+s)+i,1 ] —k<t+1)+z_171 SZSt

Now, we set weight sequences ¢ := {(]'} 1<i<t and = {n]'} 1<j<s , where
0<n<oo 0<n<oo

Cwej =

m i
¢ = [Tl < <40 < n < oo,
M (t4+1)+i—1
and
m Pt
77]('”): Mon(tts)+j+t-1 1<j<s,0<n<oc.

M (t+1)+t

Therefore, it is easy to check that C, is unitarily equivalent to the block matrix operator
M(¢,n) with weight sequence (¢, 7). O

Remark 2.3. In Proposition 2.2, put t = 2 and s = 4. Then, C,ey = ,/%860, Cpe1 =

fmy — [ma m3 my ms s i is i
1 €15 Cpea = me€2+ 4/ mees+ [ rest+ [/ oes and - - -. Therefore, in this case, C, is
equivalent to the block matrix

%8 0 0
B, ] 0 J/m o
Ez 0o 0 Jm
(2.4) Es where B 1= Ej; =
Ey 0 0 %
i l 0 0 A /%
0o 0 fm

Proposition 2.4. [1] Let M(({,n) be a block matrixz operator with weight sequence ((,n),

where ¢ :={(]'} 1<i<r and 1 :={n}} 1<j<s . Then there exists a measurable transformation
0<n<oo 0<n<oo

¢ on a o-finite measure space (Ng, P(Ng), m) such that M((,n) is unitarily equivalent to the
composition operator Cy, on 2.

Proposition 2.5. [7] The folllowing are equivalent:
(i) Cy is absolute-(p, r)-*-paranormal.
(ii) (h" o )E(hP) > hPT" o ©? on S(h).

(i13) C, is (p, T, q)-*-paranormal.
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Theorem 2.6. Let ¢ be a non-singular measurable transformation on 2 as in (2.2) and let
p>0,7r>0 and q> 0. Then the following assertions are equivalent

(i) Cy, is absolute-(p,r)-*-paranormal on (?;
(i1) Cy is (p,r,q)-*-paranormal.

(731) the block matriz operator M((,n) as in Proposition 2.2 is absolute-(p, r)-*-paranorma
and (p,r,q)-*-paranormal.

(iv) (R" o )(n)E(hP)(n) > hP*" o p?(n) on S(h).

(v) the following inequality for n € Ny, holds

me )\ 1 me G,
( My (n) ) m(gp_l(gp(n)))leplz(‘p(n)) Jj !

5 . <m(90‘1(302(n)))>p+r7

M2 (n)

Proof. Because of Propositions 2.4 and 2.5 we have (i), (ii), (iii) and (iv) are equivalent. Also,
by a similar argument as in the proof of [Theorem 2.1, [1]], it is easy to see that (iv) and (v)
are equivalent. O

The conditions above simplify considerably if we specialize to the case of a repeated block
Let M((,n) be a block matrix operator where ¢ := {(/'} 1<i<t and 1 := {n]} 1<j<s as

0<n<oo 0<n<oo
follows:

(2.6) Mn):E=Ei=E =Fy=---

¢ =G neNy, 1<i<t

n:n](-"):nj,neNo,ISsz.

For any n € Ny, let i,, denote the solution to the conditions 1 < i, < tandn = ki (t+1)+i,—1
for some k1 € Ny. Similarly, let v, satisfy 1 < v, < s and n = ko(t + s) + v, — 1 + ¢ for some
ko € Np.

Theorem 2.7. Let M((,n) be as in (2.6). Then the block matriz operator M((,n) is absolute-
(p, r)-x-paranormal if and only if the following three conditions hold:
(i) if n=Fk(t+s)+i—1+t for1 <i<s, then for alll <i; <t and1 < wvj; < s we have

r P

2

T,

i ¥ o(x) (si)

1<i<s nga_l(ga(n)) 1<i<s 1<i<s UR
j=t mod(t+1)

2
(2.7) D D (h ki (mj>2 Yo
(n)

Di<ics T
jeo 1y 1<i<s 'l5 1<i<s
jZt mod(t+1)

ptr
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(16) if n=Fk(t+s)+q—1 and k is even, for 1 < q <t, we have
(i—a) (Y PP (@ n=t mod(t+1)
1<i<s
(ii —b) ¢Zr¢r > 2 n=i,—1 mod(t+1)andl <i, <t.
(ii1) if n =k(r+s)+q—1 and k is odd, then for 1 < q <t we have
Gi—a) (S m@r=( S )t =t modt+1)
1<i<s 1<v, <s
(i —b) CCP=( > m )P n=i, —1 mod(t+1)withl <i, <t.
1<v,<s
Proof. First, we proof (i): since n = k(t+s)+i—1+tfor 1 <i<s. Thus p(n) =k(t+1)+t
and o~ (p(n)) = {k(t+s)+i—1+t:1<i<s} By using Proposition 2.2, we have
_ k
m(e™ em) = Y Mipreriire = Y 0 Mg
1<i<s 1<i<s
since for any k € Ny, 772-(’6) =n;. So m(p~(p(n))) = Zlgigs nfmk(tH)H. Also, since in this
case ©%(n) = ¢(n), therefore we have

<m(¢1(<p(n)))> _ (m(gpl(<p2(n)))> _ <Zl§i§s mzmso(n)) -3 2

m@(n) mSOQ(”) v(n) 1<i<s
Now, we will calculate m > jco-1(p(n) m(%lp(j))pmj. By using Proposition 2.2, we
deduce that ’
m; ﬁgjmk(t+1)+t _ 775]-

1<v; <s.

m(e~t(p(n)) Zlgigs n?mk(t+1)+t a Z1§i§5 n;’

—10i1)\ P
In sequel, we compute (m(‘pmi]l(]))> for 7 € ¢1(¢(n)). To do so we consider two subcases.

Casela: j = ky(t+1)+t,k; € Ny, then we have ¢~ 1(j) = {k1(t+s)+i—1+t:1<i<s}
By Proposition 2.2, we have

m(e~' () Zl<z‘<s77z‘2mk1(t+1)+t>p_ 2
( m; >_< -l

My (t4-1)+t 1<i<s

p

Caselb: j = ki(t+1)+i; — 1 for k1 € Ng and 1 < 4; < t. In this case we get that
¢ (j)=ki(t+s)+i; —1:1<i; <t, so Proposition 2.2 implies that

m(e G\ _ (2\?
- Cij :
m;
Therefore, for n = k(t+s)+i—1+t and 1 < i < ¢, we conclude that (2.5) is equivalent to (2.7).

Now, we proof (ii): In this case n = k(t+s)+qg—1for 1 < ¢ <tand k is even. By (2.2) and
(2.3), it is easy to see that ¢(n) = p?(n) = k(t+1)+q—1and o~ 1(p(n)) = p~1(¢?*(n)) = n,
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by using Proposition 2.2, we get that

m(p~ ) _ me~ P M) _ Mi(erora-t _ Samr(1+e-1
m(p(n)) m(p%(n)) M (t41)4q—1 M (t41)4q—1

m(e” 1( (n)))

2
:qu

=1 for j € o~ (p(n)).

Now we consider two subcases for computations of < i (] ) )) ,J € o (p(n)).

Since ¢~ (¢(n)) = n for n = k(t+s) +q— 1, obviously ™

Case2a: j(=n) = ko(t+ 1)+t for some ky € Ng. Hence, we have p~1(j) = {ko(t+s) +i —
1+t¢:1<1i<s}. Hence

m(gpil(])) Zl<7,<s 777, mkz t+1)+ Z 77
my; My (t41)+ v
J 2(t+ 1<i<s

Case2b: j(=n) = ka(t + 1) + i, — 1 for some ky € Ny, with 1 < 4, < t. Obviously
o 1(j) = {ka(t + s) +in — 1 : 1 <y, < t}, consequently

m(gp_l(j)) _ C MMko (t+1)+vp—1 —C
mj Mo (t+1)+vn—1 n

Thus we get that in this case (2.5) is equivalent to

p T
& (21933 77?) > P n=t, mod(t+ 1),

C?Cff > ngﬂﬂ) n=i,—1, mod(t+1).

Finally, we proof (iii): n = k(t +s) +¢—1for 1 < ¢ <t and k is odd. By (2.2) and (
we have p(n) = k(t +1) +q— 1, ¢ 71 (p(n)) = n, ¢*(n) = k(t+ 1) +t and o~ (¢*(n
{k(t+s)+v,—141t:1<w, <s} by using Proposition 2.2, we get that

2.3),
) =

me~ (o)) _ 5 mle~H(¢?*(n) _ S

miem) 0 mi2m) e ™
Also, by a similar argument as in the proof of (ii), we have

L Y oi<i 17?, n=t, mod(t+1),
m(e~'(5)) t=est

mj 9
in

Consequently, for n = k(t + s) + ¢ — 1 where k is odd and 1 < ¢ < ¢, we get that (2.5) is
equivalent to

p p+r
Cq2r (Zlgigt 773) > <Zl§vn§s 7712;”) n=t, HlOd(t + 1),

n=i,—1, mod(t+1)

2r -2p 2 \P*" -
e > (Zlgungs 771;”) n=i,—1, mod(t+1).
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Example 2.8. Let

E

E = and M := E

SO0
— = = O

0

Note that c¢ is a fixed positive real number. Then some direct computations show that the
conditions for M to be absolute (p,r)-*-paranormal in Theorem 2.7 is equivalent to the
following condition:

(2.8) P >3 and APt > gpr

Then by using (2.8) we can find ¢ such that M is absolute-(2, 3)-*-paranormal but it is not
absolute-(2, 4)-«-paranormal. Namely, put ¢ = 1.8

Example 2.9. Let

a 0 0 O
0 b 0O
0 0 c O o
F = 8 8 8 ; and M = F
0 0 01
0 0 0 3
0 0 01

where a, b, ¢ are fixed positive real number. Hence, by using Theorem 2.7, it is easy to see
that M is absolute-(p, r)-*-paranormal if and only if the following conditions hold:

(2.9) 167 + 2a% + b% + 9¢? > 16PTL;
a2(rtr) > 167+
p2(Ptr) > 6Pt

CQ(p—i—r) > 167+

Therefore by using (2.9), we can find a, b and ¢ such that M is absolute-(3, 4)-*-paranormal,
but it is not absolute-(1,3)-x-paranormal. Put a = 5, b = 6 and ¢ = 4, so this yields
that the classes of absolute-(p, r)-*-paranormal operators are distinct for p > 0 and r > 0.
Also, by Theorem 2.6 we deduce that this block matrix operator can separate the classes of
(p, T, q)-*-paranormal operators for p > 0, » > 0 and ¢ > 0.
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