Research Paper

ABSOLUTE- $(p, r)-*-$ PARANORMALITY AND BLOCK MATRIX OPERATORS

ZAHRA MOAYYERIZADEH

Abstract

In this paper, we introduce a new model of a block matrix operator $\mathcal{M}(\zeta, \eta)$ induced by two sequences ζ and η and characterize its absolute- (p, r)-*-paranormality. Next, we give examples of these operators to show that absolute- (p, r)-*-paranormal classes are distinct.

MSC(2010): 47B20; 47B38.
Keywords: Composition operator, Conditional expectation, Absolute-(p, r)-*-paranormal operators, Block matrix operators.

1. Introduction and preliminaries

Let \mathcal{H} be the infinite dimensional complex Hilbert space and $\mathcal{L}(\mathcal{H})$ be the algebra of all bounded linear operators on \mathcal{H}. Let $T=U|T|$ be the canonical polar decomposition for $T \in \mathcal{L}(\mathcal{H})$. An operator T is said to be paranormal if $\|T x\|^{2} \leq\left\|T^{2} x\right\|$, for any unit vector $x \in \mathcal{H}$. Further, T is said to be $*$-paranormal if $\left\|T^{*} x\right\|^{2} \leq\left\|T^{2} x\right\|$, for any unit vector $x \in \mathcal{H}$. An operator T is $\mathcal{A}\left(k^{*}\right)$ class operator if $\left(T^{*}|T|^{2 k} T\right)^{\frac{1}{k+1}} \leq\left|T^{*}\right|^{2}$, for every $k>0$. In the paper [5], there were introduced absolute- k-*-paranormal class of operators as follows: $\left\||T|^{k} T x\right\| \geq\left\|T^{*} x\right\|^{k+1}$, for $x \in \mathcal{H},\|x\|=1$ and for any $k>0$. The $\mathcal{A}\left(k^{*}\right)$ class operators is included in the absolute- k-*-paranormal operators for any $k>0$ (see Theorem 2.4 in [9]). An operator T is said to be p-*-paranormal if $\left\||T|^{p} U|T|^{p} x\right\| \geq\left\|\left||T|^{p} U^{*} x \|^{2}\right.\right.$, for all unit vectors $x \in \mathcal{H}$ and $p>0$. Braha and Hoxha [1] introduced the absolute- (p, r)-*-paranormality which is a further generalization of both absolute- k-*-paranormality and p-*-paranormality. For each $p>0, r \geq 0$, an operator T is absolute- (p, r)-*-paranormal if

$$
\left\||T|^{p} U|T|^{r} x\right\|^{r} \geq\left\||T|^{r} U^{*} x\right\|^{p+r}
$$

for any unit vector $x \in \mathcal{H}$. Also, they introduced (p, r, q)-*-paranormal operators. For each $p>0, r \geq 0$ and $q>0$, an operator T is (p, r, q)-*-paranormal if $\left\||T|^{p} U|T|^{r} x\right\|^{\frac{1}{q}}\|x\|^{p} \geq$ $\left\||T|^{\frac{p+r}{q}} U^{*} x\right\|$, for all unit vectors $x \in \mathcal{H}$.

Let (X, Σ, μ) be a complete σ-finite measure space and let \mathcal{A} be a sub- σ-finite algebra of Σ. We use the notation $L^{2}(\mathcal{A})$ for $L^{2}\left(X, \mathcal{A}, \mu_{\mid \mathcal{A}}\right)$ and henceforth we write μ in place of $\mu_{\left.\right|_{\mathcal{A}}}$. All comparisons between two functions or two sets are to be interpreted as holding up to a μ-null set. The support of a measurable function f is defined as $S(f)=\{x \in X ; f(x) \neq 0\}$. We denote the vector space of all equivalence classes of almost everywhere finite valued measurable

[^0]functions on X by $L^{0}(\Sigma)$. Let $\varphi: X \rightarrow X$ be a transformation such that $\varphi^{-1}(\Sigma) \subseteq \Sigma$ and $\mu \circ \varphi^{-1} \ll \mu$. It is assumed that the Radon-Nikodym derivative $h=d \mu \circ \varphi^{-1} / d \mu$ is finitevalued or equivalently $\left(X, \varphi^{-1}(\Sigma), \mu\right)$ is σ-finite. The composition operator C_{φ} acting on $L^{2}(\Sigma):=L^{2}(X, \Sigma, \mu)$ is defined by $C_{\varphi}=f \circ \varphi$. The condition $h \in L^{\infty}(\Sigma)$ assures that C_{φ} is bounded. For any non-negative Σ-measurable function f as well as for any $f \in L^{p}(\Sigma)$ by the Radon-Nikodym theorem, there exists a unique \mathcal{A}-measurable function $E(f)$ such that
$$
\int_{A} E f d \mu=\int_{A} f d \mu, \text { for all } A \in \mathcal{A} .
$$

Hence we obtain a operator E from $L^{p}(\Sigma)$ to $L^{p}(\mathcal{A})$ which is conditional expectation operator associated with the σ-algebra \mathcal{A}. This operator will play major role in our work. For further information on conditional type operators, see [6, 10]. Composition operators as an extension of shift operators are a good tool for separating weak paranormal classes. Classic seminormal composition operators have been extensively studied by Harrington and Whitley [5], Lambert [8], Singh [11], Campbell [3] and many other mathematicians.

In this paper, we will restrict ourselves to the Hilbert space $\ell^{2}(\mathbb{N})$ of complex-valued functions on the natural numbers. The space of $\ell^{2}(\mathbb{N})$ can also be denoted by $L^{2}\left(\mathbb{N}, 2^{\mathbb{N}}, \mu\right)$, where $2^{\mathbb{N}}$ is the power set of natural numbers and μ is a measure on $2^{\mathbb{N}}$ define by $\mu(\{n\})=m_{n}$ where $\left\{m_{n}\right\}_{n=1}^{\infty}$ be a sequance of positive real numbers.
Let $\left\{e_{n}\right\}_{n \in \mathbb{N}}$ be an orthonormal basis for $\ell^{2}(\mathbb{N})$, and $f=\sum_{n \in \mathbb{N}} f_{n} e_{n}$ be in $\ell^{2}(\mathbb{N})$. Then some direct computations show that for each $k \in \mathbb{N}$:

$$
\begin{equation*}
h(k)=\frac{1}{m_{k}} \sum_{j \in \varphi^{-1}(k)} m_{j}, \quad E(f)(k)=\frac{\sum_{j \in \varphi^{-1}(\varphi(k))} f_{j} m_{j}}{\sum_{j \in \varphi^{-1}(\varphi(k))} m_{j}} ; \tag{1.1}
\end{equation*}
$$

In [4], Exner, Jung and Lee introduced a model of block matrix operator and by using composition operators, characterize its p-hyponormality. In this paper we define a new block matrix on $\ell^{2}(\mathbb{N})$. Next, we obtain the (p, r, q)-*-paranormality and the absolute- $(p, r)-*$ paranormality criteria of these type block matrices. Finally, some examples presented which show that block matrix operators can distinguish between these classes.

2. Characterizations

Let $\zeta:=\left\{\zeta_{i}^{n}\right\}_{\substack{1 \leq i \leq t \\ 0 \leq n<\infty}}$ and $\eta:=\left\{\eta_{j}^{n}\right\}_{\substack{1 \leq j \leq s \\ 0 \leq n<\infty}}$ be bounded sequences of positive real numbers. Let $\mathcal{M}(\zeta, \eta):=\left[E_{i j}\right]_{0 \leq i, j<\infty}$ be a block matrix operator whose blocks are $(t+s) \times(t+1)$ matrices such that $E_{i j}=0, i \neq j$, and

$$
E_{n}:=E_{n n}=\left[\begin{array}{cccc}
\zeta_{1}^{(n)} & & & O \tag{2.1}\\
& \ddots & & \\
& & \zeta_{t}^{(n)} & \\
& & & \eta_{1}^{(n)} \\
& O & & \vdots \\
& & & \eta_{s}^{(n)}
\end{array}\right]
$$

where other entries are 0 except ζ_{*}^{n} and η_{*}^{n} in (2.1). It is clear that block matrix \mathcal{M} is bounded.

Definition 2.1. For two bounded sequences $\zeta:=\left\{\zeta_{i}^{n}\right\}_{\substack{1 \leq i \leq t \\ 0 \leq n<\infty}}$ and $\eta:=\left\{\eta_{j}^{n}\right\}_{\substack{1 \leq j \leq s \\ 0 \leq n<\infty}}$, the block matrix operator $\mathcal{M}:=\mathcal{M}(\zeta, \eta)$ satisfying in (2.1) is called a block matrix operator with weight sequence (ζ, η).

Let \mathcal{M} be a block matrix operator with weight sequence (ζ, η) and let $\left.\mathcal{W}_{(} \zeta, \eta\right)$ be its corresponding operator on ℓ^{2} relative to some orthonormal basis. Then $\mathcal{W}(\zeta, \eta)$ may provide a repetitive form; for example $t=2, s=4$ and $\zeta_{i}^{(n)}=\eta_{j}^{(n)}=1$ for all $i, j, n \in \mathbb{N}$, then the block matrix operator with (ζ, η) is unitarily equivalent to the following operator $\mathcal{W}_{\zeta, \eta}$ on ℓ^{2} defined by

$$
\mathcal{W}_{\zeta, \eta}\left(x_{1}, x_{2}, x_{3}, x_{4}, \ldots\right)=(x_{1}, x_{2}, \underbrace{x_{3}, x_{3}, x_{3}, x_{3}}_{(4)}, x_{4}, x_{5}, \underbrace{x_{6}, x_{6}, x_{6}, x_{6}}_{(4)}, x_{7}, x_{8}, \ldots) .
$$

We put $X=\mathbb{N}_{0}$ and the power set $\mathcal{P}(X)$ of X for the σ-algebra Σ. Define a non-singular measurable transformation φ on \mathbb{N}_{0} such that

$$
\begin{align*}
\varphi^{-1}(k(t+1)+t) & =\{k(t+s)+i-1+t: 1 \leq i \leq s\}, \quad k=0,1,2, \ldots \tag{2.2}\\
\varphi^{-1}(k(t+1)+i-1) & =k(t+s)+i-1, \quad 1 \leq i \leq t, \quad k=0,1,2, \ldots
\end{align*}
$$

If we choose s and t in such a way that their sum is always an even number, then we have

$$
\varphi^{2}(n)= \begin{cases}k(t+1)+t & n=k(t+s)+i+t-1,1 \leq i \leq s \quad k \in \mathbb{N}_{0} \tag{2.3}\\ k(t+1)+t & n=k(t+s)+i-1,1 \leq i \leq t, k \in \mathbb{N}_{0}, k \text { is odd } \\ k(t+1)+i-1 & n=k(t+s)+i-1,1 \leq i \leq t, k \in \mathbb{N}_{0}, k \text { is even. }\end{cases}
$$

Throughout this paper, we assume that $t+s$ is even. We write $m(\{i\}):=m_{i}, i \in \mathbb{N}_{0}$, for the underlying point mass measure on X, and we suppose that each m_{i} is strictly positive.

Proposition 2.2. The composition operator C_{φ} on ℓ^{2} defined by $C_{\varphi} f=f \circ \varphi$ is unitarily equivalent to the block matrix operator $\mathcal{M}(\zeta, \eta)$, where $\zeta:=\left\{\zeta_{i}^{n}\right\}_{\substack{1 \leq i \leq t \\ 0 \leq n<\infty}}^{\substack{ \\\hline}}$ and $\eta:=\left\{\eta_{j}^{n}\right\}_{\substack{1 \leq j \leq s \\ 0 \leq n<\infty}}^{\substack{\text { a }}}$ and for each $n \in \mathbb{N}_{0}$

$$
\begin{aligned}
\zeta_{i}^{(n)} & =\sqrt{\frac{m_{n(t+s)+i-1}}{m_{n(t+1)+i-1}}} \quad(1 \leq i \leq t) \\
\eta_{j}^{(n)} & =\sqrt{\frac{m_{n(t+s)+j+t-1}}{m_{n(t+1)+t}}} \quad(1 \leq j \leq s)
\end{aligned}
$$

Proof. Let $e_{i}=\frac{1}{\sqrt{m_{i}}} \chi_{i} \quad\left(i \in \mathbb{N}_{0}\right)$. Then $\left\{e_{i}\right\}_{i \in \mathbb{N}_{0}}$ is an orthonormal basis for ℓ^{2}. We have

$$
C_{\varphi} e_{j}=e_{j} \circ \varphi=\frac{1}{\sqrt{m_{j}}} \chi_{\varphi^{-1}\{j\}}=\frac{1}{\sqrt{m_{j}}} \sum_{i \in \varphi^{-1}(j)} e_{i} \sqrt{m_{i}}
$$

Then, for each $k \in \mathbb{N}_{0}$, we have

$$
C_{\varphi} e_{j}= \begin{cases}\sum_{1 \leq i \leq s} \sqrt{\frac{m_{k(t+s)+i-1+t}}{m_{k(t+1)+t}}} e_{k(t+s)+i-1+t} & j=k(t+1)+t ; \\ \sqrt{\frac{m_{k(t+s)+i-1}}{m_{k(t+1)+i-1}}} e_{k(t+s)+i-1} & j=k(t+1)+i-1,1 \leq i \leq t\end{cases}
$$

Now, we set weight sequences $\zeta:=\left\{\zeta_{i}^{n}\right\}_{\substack{1 \leq i \leq t \\ 0 \leq n<\infty}}$ and $\eta:=\left\{\eta_{j}^{n}\right\}_{\substack{1 \leq j \leq s \\ 0 \leq n<\infty}}$, where

$$
\zeta_{i}^{(n)}=\sqrt{\frac{m_{n(t+s)+i-1}}{m_{n(t+1)+i-1}}}, \quad 1 \leq i \leq t, 0 \leq n<\infty
$$

and

$$
\eta_{j}^{(n)}=\sqrt{\frac{m_{n(t+s)+j+t-1}}{m_{n(t+1)+t}}} \quad 1 \leq j \leq s, 0 \leq n<\infty .
$$

Therefore, it is easy to check that C_{φ} is unitarily equivalent to the block matrix operator $\mathcal{M}(\zeta, \eta)$ with weight sequence (ζ, η).

Remark 2.3. In Proposition 2.2, put $t=2$ and $s=4$. Then, $C_{\varphi} e_{0}=\sqrt{\frac{m_{0}}{m_{0}}} e_{0}, C_{\varphi} e_{1}=$ $\sqrt{\frac{m_{1}}{m_{1}}} e_{1}, C_{\varphi} e_{2}=\sqrt{\frac{m_{2}}{m_{2}}} e_{2}+\sqrt{\frac{m_{3}}{m_{2}}} e_{3}+\sqrt{\frac{m_{4}}{m_{2}}} e_{4}+\sqrt{\frac{m_{5}}{m_{2}}} e_{5}$ and \cdots. Therefore, in this case, C_{φ} is equivalent to the block matrix

$$
\left[\begin{array}{cccc}
E_{1} & & & \tag{2.4}\\
& E_{2} & & \\
& & E_{3} & \\
& & E_{4} \\
& & \ddots &
\end{array}\right] \text { where } E_{1}:=E_{11}=\left[\begin{array}{ccc}
\sqrt{\frac{m_{0}}{m_{0}}} & 0 & 0 \\
0 & \sqrt{\frac{m_{1}}{m_{1}}} & 0 \\
0 & 0 & \sqrt{\frac{m_{2}}{m_{2}}} \\
0 & 0 & \sqrt{\frac{m_{3}}{m_{2}}} \\
0 & 0 & \sqrt{\frac{m_{4}}{m_{2}}} \\
0 & 0 & \sqrt{\frac{m_{5}}{m_{2}}}
\end{array}\right] .
$$

Proposition 2.4. [4] Let $\mathcal{M}(\zeta, \eta)$ be a block matrix operator with weight sequence (ζ, η), where $\zeta:=\left\{\zeta_{i}^{n}\right\}_{\substack{1 \leq i \leq r \\ 0 \leq n<\infty}}$ and $\eta:=\left\{\eta_{j}^{n}\right\}_{\substack{1 \leq j \leq s \\ 0 \leq n<\infty}}$. Then there exists a measurable transformation φ on a σ-finite measure space $\left(\mathbb{N}_{0}, \mathcal{P}\left(\mathbb{N}_{0}\right), m\right)$ such that $\mathcal{M}(\zeta, \eta)$ is unitarily equivalent to the composition operator C_{φ} on ℓ^{2}.

Proposition 2.5. [7] The folllowing are equivalent:
(i) C_{φ} is absolute-(p, r)-*-paranormal.
(ii) $\left(h^{r} \circ \varphi\right) E\left(h^{p}\right) \geq h^{p+r} \circ \varphi^{2}$ on $S(h)$.
(iii) C_{φ} is (p, r, q)-*-paranormal.

Theorem 2.6. Let φ be a non-singular measurable transformation on ℓ^{2} as in (2.2) and let $p>0, r \geq 0$ and $q>0$. Then the following assertions are equivalent
(i) C_{φ} is absolute-($\left.p, r\right)$-*-paranormal on ℓ^{2};
(ii) C_{φ} is (p, r, q)-*-paranormal.
(iii) the block matrix operator $\mathcal{M}(\zeta, \eta)$ as in Proposition 2.2 is absolute- (p, r)-*-paranorma and (p, r, q)-*-paranormal.
(iv) $\left(h^{r} \circ \varphi\right)(n) E\left(h^{p}\right)(n) \geq h^{p+r} \circ \varphi^{2}(n)$ on $S(h)$.
(v) the following inequality for $n \in \mathbb{N}_{0}$, holds

$$
\begin{align*}
\left(\frac{m\left(\varphi^{-1}(\varphi(n))\right)}{m_{\varphi(n)}}\right)^{r} \frac{1}{m\left(\varphi^{-1}(\varphi(n))\right)} & \sum_{l \in \varphi^{-1}(\varphi(n))} \frac{m\left(\varphi^{-1}(j)\right)^{p}}{m_{j}^{p}} m_{j} \\
& \geq\left(\frac{m\left(\varphi^{-1}\left(\varphi^{2}(n)\right)\right)}{m_{\varphi^{2}(n)}}\right)^{p+r} \tag{2.5}
\end{align*}
$$

Proof. Because of Propositions 2.4 and 2.5 we have (i), (ii), (iii) and (iv) are equivalent. Also, by a similar argument as in the proof of [Theorem 2.1, [4]], it is easy to see that (iv) and (v) are equivalent.

The conditions above simplify considerably if we specialize to the case of a repeated block Let $\mathcal{M}(\zeta, \eta)$ be a block matrix operator where $\zeta:=\left\{\zeta_{i}^{n}\right\}_{\substack{1 \leq i \leq t \\ 0 \leq n<\infty}}$ and $\eta:=\left\{\eta_{j}^{n}\right\}_{\substack{1 \leq j \leq s \\ 0 \leq n<\infty}}^{\substack{\text { a }}}$ as follows:

$$
\begin{align*}
& \mathcal{M}(\zeta, \eta): E \equiv E_{1} \equiv E_{1}=E_{2}=\cdots \tag{2.6}\\
& \quad \zeta: \zeta_{i}^{(n)}=\zeta_{i}, n \in \mathbb{N}_{0}, 1 \leq i \leq t \\
& \eta: \eta_{j}^{(n)}=\eta_{j}, n \in \mathbb{N}_{0}, 1 \leq j \leq s
\end{align*}
$$

For any $n \in \mathbb{N}_{0}$, let i_{n} denote the solution to the conditions $1 \leq i_{n} \leq t$ and $n=k_{1}(t+1)+i_{n}-1$ for some $k_{1} \in \mathbb{N}_{0}$. Similarly, let v_{n} satisfy $1 \leq v_{n} \leq s$ and $n=k_{2}(t+s)+v_{n}-1+t$ for some $k_{2} \in \mathbb{N}_{0}$.

Theorem 2.7. Let $\mathcal{M}(\zeta, \eta)$ be as in (2.6). Then the block matrix operator $\mathcal{M}(\zeta, \eta)$ is absolute(p, r)-*-paranormal if and only if the following three conditions hold:
(i) if $n=k(t+s)+i-1+t$ for $1 \leq i \leq s$, then for all $1 \leq i_{j} \leq t$ and $1 \leq v_{j} \leq s$ we have

$$
\begin{align*}
\left(\sum_{1 \leq i \leq s} \eta_{i}^{2}\right)^{r} & \sum_{\substack{j \in \varphi^{-1}(\varphi(n)) \\
j \equiv t \bmod (t+1)}}\left(\sum_{1 \leq i \leq s} \eta_{i}^{2}\right)^{p}\left(\frac{\eta_{v_{j}}^{2}}{\sum_{1 \leq i \leq s} \eta_{i}^{2}}\right) \\
& +\sum_{\substack{j \in \varphi^{-1}(\varphi(n)) \\
j \neq t \bmod (t+1)}}\left(\zeta_{i_{j}}\right)^{2 p}\left(\frac{\eta_{v_{j}}^{2}}{\sum_{1 \leq i \leq s} \eta_{i}^{2}}\right) \geq\left(\sum_{1 \leq i \leq s} \eta_{i}^{2}\right)^{p+r} \tag{2.7}
\end{align*}
$$

(ii) if $n=k(t+s)+q-1$ and k is even, for $1 \leq q \leq t$, we have

$$
\begin{array}{ll}
(i i-a) & \zeta_{q}^{2 r}\left(\sum_{1 \leq i \leq s} \eta_{i}^{2}\right)^{p} \geq\left(\zeta_{q}^{2}\right)^{p+r} \quad n \equiv t \quad \bmod (t+1) \\
(i i-b) & \zeta_{q}^{2 r} \zeta_{i_{n}}^{2 p} \geq \zeta_{q}^{2(p+r)} \quad n \equiv i_{n}-1 \quad \bmod (t+1) \operatorname{and} 1 \leq i_{n} \leq t
\end{array}
$$

(iii) if $n=k(r+s)+q-1$ and k is odd, then for $1 \leq q \leq t$ we have

$$
\begin{array}{ll}
(i i-a) & \zeta_{q}^{2 r}\left(\sum_{1 \leq i \leq s} \eta_{i}^{2}\right)^{p} \geq\left(\sum_{1 \leq v_{n} \leq s} \eta_{v_{n}}^{2}\right)^{p+r} \quad n \equiv t \quad \bmod (t+1) \\
(i i-b) & \zeta_{q}^{2 r} \zeta_{i_{n}}^{2 p} \geq\left(\sum_{1 \leq v_{n} \leq s} \eta_{v_{n}}^{2}\right)^{p+r} \\
n \equiv i_{n}-1 & \bmod (t+1) \text { with } 1 \leq i_{n} \leq t
\end{array}
$$

Proof. First, we proof (i): since $n=k(t+s)+i-1+t$ for $1 \leq i \leq s$. Thus $\varphi(n)=k(t+1)+t$ and $\varphi^{-1}(\varphi(n))=\{k(t+s)+i-1+t: 1 \leq i \leq s\}$. By using Proposition 2.2, we have

$$
m\left(\varphi^{-1}(\varphi(n))\right)=\sum_{1 \leq i \leq s} m_{k(t+s)+i-1+t}=\sum_{1 \leq i \leq s}\left(\eta_{i}^{(k)}\right)^{2} m_{k(t+1)+t}
$$

since for any $k \in \mathbb{N}_{0}, \eta_{i}^{(k)}=\eta_{i}$. So $m\left(\varphi^{-1}(\varphi(n))\right)=\sum_{1 \leq i \leq s} \eta_{i}^{2} m_{k(t+1)+t}$. Also, since in this case $\varphi^{2}(n)=\varphi(n)$, therefore we have

$$
\left(\frac{m\left(\varphi^{-1}(\varphi(n))\right)}{m_{\varphi(n)}}\right)=\left(\frac{m\left(\varphi^{-1}\left(\varphi^{2}(n)\right)\right)}{m_{\varphi^{2}(n)}}\right)=\left(\frac{\sum_{1 \leq i \leq s} \eta_{i}^{2} m_{\varphi(n)}}{m_{\varphi(n)}}\right)=\sum_{1 \leq i \leq s} \eta_{i}^{2} .
$$

Now, we will calculate $\frac{1}{m\left(\varphi^{-1}(\varphi(n))\right)} \sum_{j \in \varphi^{-1}(\varphi(n))} \frac{m\left(\varphi^{-1}(j)\right)^{p}}{m_{j}^{p}} m_{j}$. By using Proposition 2.2, we deduce that

$$
\frac{m_{j}}{m\left(\varphi^{-1}(\varphi(n))\right)}=\frac{\eta_{v_{j}}^{2} m_{k(t+1)+t}}{\sum_{1 \leq i \leq s} \eta_{i}^{2} m_{k(t+1)+t}}=\frac{\eta_{v_{j}}^{2}}{\sum_{1 \leq i \leq s} \eta_{i}^{2}}, \quad 1 \leq v_{j} \leq s
$$

In sequel, we compute $\left(\frac{m\left(\varphi^{-1}(j)\right)}{m_{j}}\right)^{p}$ for $j \in \varphi^{-1}(\varphi(n))$. To do so we consider two subcases.
Case1a: $j=k_{1}(t+1)+t, k_{1} \in \mathbb{N}_{0}$, then we have $\varphi^{-1}(j)=\left\{k_{1}(t+s)+i-1+t: 1 \leq i \leq s\right\}$. By Proposition 2.2, we have

$$
\left(\frac{m\left(\varphi^{-1}(j)\right)}{m_{j}}\right)^{p}=\left(\frac{\sum_{1 \leq i \leq s} \eta_{i}^{2} m_{k_{1}(t+1)+t}}{m_{k_{1}(t+1)+t}}\right)^{p}=\left(\sum_{1 \leq i \leq s} \eta_{i}^{2}\right)^{p}
$$

Case1b: $j=k_{1}(t+1)+i_{j}-1$ for $k_{1} \in \mathbb{N}_{0}$ and $1 \leq i_{j} \leq t$. In this case we get that $\varphi^{-1}(j)=k_{1}(t+s)+i_{j}-1: 1 \leq i_{j} \leq t$, so Proposition 2.2 implies that

$$
\left(\frac{m\left(\varphi^{-1}(j)\right)}{m_{j}}\right)^{p}=\left(\zeta_{i_{j}}^{2}\right)^{p}
$$

Therefore, for $n=k(t+s)+i-1+t$ and $1 \leq i \leq t$, we conclude that (2.5) is equivalent to (2.7).
Now, we proof (ii): In this case $n=k(t+s)+q-1$ for $1 \leq q \leq t$ and k is even. By (2.2) and (2.3), it is easy to see that $\varphi(n)=\varphi^{2}(n)=k(t+1)+q-1$ and $\varphi^{-1}(\varphi(n))=\varphi^{-1}\left(\varphi^{2}(n)\right)=n$,
by using Proposition 2.2, we get that

$$
\frac{m\left(\varphi^{-1}(\varphi(n))\right)}{m(\varphi(n))}=\frac{m\left(\varphi^{-1}\left(\varphi^{2}(n)\right)\right)}{m\left(\varphi^{2}(n)\right)}=\frac{m_{k(t+s)+q-1}}{m_{k(t+1)+q-1}}=\frac{\zeta_{q}^{2} m_{k(t+1)+q-1}}{m_{k(t+1)+q-1}}=\zeta_{q}^{2}
$$

Since $\varphi^{-1}(\varphi(n))=n$ for $n=k(t+s)+q-1$, obviously $\frac{m\left(\varphi^{-1}(\varphi(n))\right)}{m_{j}}=1$ for $j \in \varphi^{-1}(\varphi(n))$. Now we consider two subcases for computations of $\left(\frac{m\left(\varphi^{-1}(j)\right)}{m_{j}}\right)^{p}, j \in \varphi^{-1}(\varphi(n))$.

Case2a: $j(=n)=k_{2}(t+1)+t$ for some $k_{2} \in \mathbb{N}_{0}$. Hence, we have $\varphi^{-1}(j)=\left\{k_{2}(t+s)+i-\right.$ $1+t: 1 \leq i \leq s\}$. Hence

$$
\frac{m\left(\varphi^{-1}(j)\right)}{m_{j}}=\frac{\sum_{1 \leq i \leq s} \eta_{i}^{2} m_{k_{2}(t+1)+t}}{m_{k_{2}(t+1)+t}}=\sum_{1 \leq i \leq s} \eta_{i}^{2}
$$

Case2b: $j(=n)=k_{2}(t+1)+i_{n}-1$ for some $k_{2} \in \mathbb{N}_{0}$, with $1 \leq i_{n} \leq t$. Obviously $\varphi^{-1}(j)=\left\{k_{2}(t+s)+i_{n}-1: 1 \leq i_{n} \leq t\right\}$, consequently

$$
\frac{m\left(\varphi^{-1}(j)\right)}{m_{j}}=\frac{\zeta_{i_{n}}^{2} m_{k_{2}(t+1)+v_{n}-1}}{m_{k_{2}(t+1)+v_{n}-1}}=\zeta_{i_{n}}^{2}
$$

Thus we get that in this case (2.5) is equivalent to

$$
\begin{cases}\zeta_{q}^{2 r}\left(\sum_{1 \leq i \leq s} \eta_{i}^{2}\right)^{p} \geq \zeta_{q}^{2(p+r)} & n \equiv t, \quad \bmod (t+1) \\ \zeta_{q}^{2 r} \zeta_{i_{n}}^{2 p} \geq \zeta_{q}^{2(p+r)} & n \equiv i_{n}-1, \quad \bmod (t+1)\end{cases}
$$

Finally, we proof (iii): $n=k(t+s)+q-1$ for $1 \leq q \leq t$ and k is odd. By (2.2) and (2.3), we have $\varphi(n)=k(t+1)+q-1, \varphi^{-1}(\varphi(n))=n, \varphi^{2}(n)=k(t+1)+t$ and $\varphi^{-1}\left(\varphi^{2}(n)\right)=$ $\left\{k(t+s)+v_{n}-1+t: 1 \leq v_{n} \leq s\right\}$ by using Proposition 2.2, we get that

$$
\frac{m\left(\varphi^{-1}(\varphi(n))\right)}{m(\varphi(n))}=\zeta_{q}^{2}, \frac{m\left(\varphi^{-1}\left(\varphi^{2}(n)\right)\right)}{m\left(\varphi^{2}(n)\right)}=\sum_{1 \leq v_{n} \leq s} \eta_{v_{n}}^{2}
$$

Also, by a similar argument as in the proof of (ii), we have

$$
\frac{m\left(\varphi^{-1}(j)\right)}{m_{j}}= \begin{cases}\sum_{1 \leq i \leq t} \eta_{i}^{2}, & n \equiv t, \quad \bmod (t+1) \\ \zeta_{i_{n}}^{2} & n \equiv i_{n}-1, \quad \bmod (t+1)\end{cases}
$$

Consequently, for $n=k(t+s)+q-1$ where k is odd and $1 \leq q \leq t$, we get that (2.5) is equivalent to

$$
\begin{cases}\zeta_{q}^{2 r}\left(\sum_{1 \leq i \leq t} \eta_{i}^{2}\right)^{p} \geq\left(\sum_{1 \leq v_{n} \leq s} \eta_{v_{n}}^{2}\right)^{p+r} & n \equiv t, \quad \bmod (t+1) \\ \zeta_{q}^{2 r} \zeta_{i_{n}}^{2 p} \geq\left(\sum_{1 \leq v_{n} \leq s} \eta_{v_{n}}^{2}\right)^{p+r} & n \equiv i_{n}-1, \quad \bmod (t+1)\end{cases}
$$

Example 2.8. Let

$$
E:=\left[\begin{array}{ll}
c & 0 \\
0 & 1 \\
0 & 1 \\
0 & 1
\end{array}\right] \quad \text { and } \quad \mathcal{M}:=\left[\begin{array}{lll}
E & & \\
& E & \\
& & \ddots
\end{array}\right]
$$

Note that c is a fixed positive real number. Then some direct computations show that the conditions for \mathcal{M} to be absolute (p, r)-*-paranormal in Theorem 2.7 is equivalent to the following condition:

$$
\begin{equation*}
c^{2 p} \geq 3^{p} \quad \text { and } \quad c^{2(p+r)} \geq 3^{p+r} \tag{2.8}
\end{equation*}
$$

Then by using (2.8) we can find c such that \mathcal{M} is absolute-(2,3)-*-paranormal but it is not absolute-(2, 4)-*-paranormal. Namely, put $c=1.8$

Example 2.9. Let

$$
F:=\left[\begin{array}{cccc}
a & 0 & 0 & 0 \\
0 & b & 0 & 0 \\
0 & 0 & c & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 2 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 3 \\
0 & 0 & 0 & 1
\end{array}\right] \text { and } \mathcal{M}:=\left[\begin{array}{llll}
F & & \\
& F & \\
& & \ddots
\end{array}\right]
$$

where a, b, c are fixed positive real number. Hence, by using Theorem 2.7, it is easy to see that \mathcal{M} is absolute- (p, r)-*-paranormal if and only if the following conditions hold:

$$
\begin{align*}
& 16^{p}+2 a^{2}+b^{2}+9 c^{2} \geq 16^{p+1} \tag{2.9}\\
& a^{2(p+r)} \geq 16^{p+r} \\
& b^{2(p+r)} \geq 16^{p+r} \\
& c^{2(p+r)} \geq 16^{p+r}
\end{align*}
$$

Therefore by using (2.9), we can find a, b and c such that \mathcal{M} is absolute-(3,4)-*-paranormal, but it is not absolute-(1,3)-*-paranormal. Put $a=5, b=6$ and $c=4$, so this yields that the classes of absolute- (p, r)-*-paranormal operators are distinct for $p>0$ and $r \geq 0$. Also, by Theorem 2.6 we deduce that this block matrix operator can separate the classes of (p, r, q)-*-paranormal operators for $p>0, r \geq 0$ and $q>0$.

References

[1] N. Braha and I. Hoxha, (p, r, q)-*-paranormal operators and Absolute- (p, r)-*-paranormal operators, J. Math. Anal, 3(2013), 14-22.
[2] C. Burnap, I. Jung and A. Lambert, Separating partial normality classes with composition operators, J. Operator Theory, 53 (2005), 381-397.
[3] J. Campbell and W. Hornor, Seminormal composition operators, J. Operator Theory 29 (1993), 323-343.
[4] G. Exner, I. Jung and M. Lee, Block matrix operators and weak hyponormalities, J. Integr. equ. oper. theory 65 (2009), 345-362.
[5] D. Harrington and R. Whitley, Seminormal composition operators, J. Operator Theory, 11 (1984), 125135.
[6] J. Herron, Weighted Conditional Expectation Operators, Oper. Matrices, 5(2011), 107-118.
[7] H. Emamalipour, M.R. Jabbarzadeh and M. Sohrabi Chegeni, Some weak p-Hyponormality classes of weighted composition operators, Filomat, 9(2017), 2643-2656.
[8] A. Lambert, Hyponormal composition operators, Bull London Math Soc 18 (1986), 395-400.
[9] S. Panayappan and A. Radharamani, A note on p-*-paranormal operators and absolute k-*-paranormal operators, Int. J. Math. Anal. 2(2008), no.25-28, 1257-1261.
[10] M. M. Rao, Conditional measure and applications, Marcel Dekker, New York, 1993.
[11] R. K. Singh and J. S. Manhas, Composition Operators on Function Spaces, North Holland Math. Studies 179, Amsterdam, 1993.
(Zahra Moayyerizadeh) Department of Mathematics, Lorestan University, Khorramabad, Iran. Email address: moayerizadeh.za@lu.ac.ir

[^0]: Date: Received: June 11, 2021 , Accepted: August 22, 2021.

