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Abstract. In this paper, we introduce a new model of a block matrix operator M(ζ, η)
induced by two sequences ζ and η and characterize its absolute-(p, r)-∗-paranormality. Next,
we give examples of these operators to show that absolute-(p, r)-∗-paranormal classes are
distinct.
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1. Introduction and preliminaries
Let H be the infinite dimensional complex Hilbert space and L(H) be the algebra of all

bounded linear operators on H. Let T = U |T | be the canonical polar decomposition for
T ∈ L(H). An operator T is said to be paranormal if ∥Tx∥2 ≤ ∥T 2x∥, for any unit vector
x ∈ H. Further, T is said to be ∗-paranormal if ∥T ∗x∥2 ≤ ∥T 2x∥, for any unit vector
x ∈ H. An operator T is A(k∗) class operator if (T ∗|T |2kT )

1
k+1 ≤ |T ∗|2, for every k > 0.

In the paper [5], there were introduced absolute-k-∗-paranormal class of operators as follows:
∥|T |kTx∥ ≥ ∥T ∗x∥k+1, for x ∈ H, ∥x∥ = 1 and for any k > 0. The A(k∗) class operators is
included in the absolute-k-∗-paranormal operators for any k > 0 (see Theorem 2.4 in [9]). An
operator T is said to be p-∗-paranormal if ∥|T |pU |T |px∥ ≥ ∥|T |pU∗x∥2, for all unit vectors
x ∈ H and p > 0. Braha and Hoxha [1] introduced the absolute-(p, r)-∗-paranormality which
is a further generalization of both absolute-k-∗-paranormality and p-∗-paranormality. For
each p > 0, r ≥ 0, an operator T is absolute-(p, r)-∗-paranormal if

∥|T |pU |T |rx∥r ≥ ∥|T |rU∗x∥p+r,

for any unit vector x ∈ H. Also, they introduced (p, r, q)-∗-paranormal operators. For each
p > 0, r ≥ 0 and q > 0, an operator T is (p, r, q)-∗-paranormal if ∥|T |pU |T |rx∥

1
q ∥x∥p ≥

∥|T |
p+r
q U∗x∥, for all unit vectors x ∈ H.

Let (X,Σ, µ) be a complete σ-finite measure space and let A be a sub-σ-finite algebra of Σ.
We use the notation L2(A) for L2(X,A, µ|A) and henceforth we write µ in place of µ|A . All
comparisons between two functions or two sets are to be interpreted as holding up to a µ-null
set. The support of a measurable function f is defined as S(f) = {x ∈ X; f(x) ̸= 0}. We
denote the vector space of all equivalence classes of almost everywhere finite valued measurable
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functions on X by L0(Σ). Let φ : X → X be a transformation such that φ−1(Σ) ⊆ Σ and
µ ◦ φ−1 ≪ µ. It is assumed that the Radon-Nikodym derivative h = dµ ◦ φ−1/dµ is finite-
valued or equivalently (X,φ−1(Σ), µ) is σ-finite. The composition operator Cφ acting on
L2(Σ) := L2(X,Σ, µ) is defined by Cφ = f ◦ φ. The condition h ∈ L∞(Σ) assures that Cφ is
bounded. For any non-negative Σ-measurable function f as well as for any f ∈ Lp(Σ) by the
Radon-Nikodym theorem, there exists a unique A-measurable function E(f) such that∫

A
Efdµ =

∫
A
fdµ, for allA ∈ A.

Hence we obtain a operator E from Lp(Σ) to Lp(A) which is conditional expectation operator
associated with the σ-algebra A. This operator will play major role in our work. For further
information on conditional type operators, see [6, 10]. Composition operators as an extension
of shift operators are a good tool for separating weak paranormal classes. Classic seminormal
composition operators have been extensively studied by Harrington and Whitley [5], Lambert
[8], Singh [11], Campbell [3] and many other mathematicians.

In this paper, we will restrict ourselves to the Hilbert space ℓ2(N) of complex-valued func-
tions on the natural numbers. The space of ℓ2(N) can also be denoted by L2(N, 2N, µ), where
2N is the power set of natural numbers and µ is a measure on 2N define by µ({n}) = mn

where {mn}∞n=1 be a sequance of positive real numbers.
Let {en}n∈N be an orthonormal basis for ℓ2(N), and f =

∑
n∈N fnen be in ℓ2(N). Then some

direct computations show that for each k ∈ N:

(1.1) h(k) =
1

mk

∑
j∈φ−1(k)

mj , E(f)(k) =

∑
j∈φ−1(φ(k))

fjmj∑
j∈φ−1(φ(k))

mj

;

In [4], Exner, Jung and Lee introduced a model of block matrix operator and by using
composition operators, characterize its p-hyponormality. In this paper we define a new block
matrix on ℓ2(N). Next, we obtain the (p, r, q)-∗-paranormality and the absolute-(p, r)-∗ para-
normality criteria of these type block matrices. Finally, some examples presented which show
that block matrix operators can distinguish between these classes.

2. Characterizations
Let ζ := {ζni } 1≤i≤t

0≤n<∞
and η := {ηnj } 1≤j≤s

0≤n<∞
be bounded sequences of positive real numbers.

Let M(ζ, η) := [Eij ]0≤i,j<∞ be a block matrix operator whose blocks are (t + s) × (t + 1)
matrices such that Eij = 0, i ̸= j, and

En := Enn =



ζ
(n)
1 O

. . .
ζ
(n)
t

η
(n)
1

O
...

η
(n)
s


.(2.1)
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where other entries are 0 except ζn∗ and ηn∗ in (2.1). It is clear that block matrix M is
bounded.

Definition 2.1. For two bounded sequences ζ := {ζni } 1≤i≤t
0≤n<∞

and η := {ηnj } 1≤j≤s
0≤n<∞

, the block

matrix operator M := M(ζ, η) satisfying in (2.1) is called a block matrix operator with
weight sequence (ζ, η).

Let M be a block matrix operator with weight sequence (ζ, η) and let W(ζ, η) be its
corresponding operator on ℓ2 relative to some orthonormal basis. Then W(ζ, η) may provide
a repetitive form; for example t = 2, s = 4 and ζ

(n)
i = η

(n)
j = 1 for all i, j, n ∈ N, then the

block matrix operator with (ζ, η) is unitarily equivalent to the following operator Wζ,η on ℓ2

defined by

Wζ,η(x1, x2, x3, x4, ...) = (x1, x2, x3, x3, x3, x3︸ ︷︷ ︸
(4)

, x4, x5, x6, x6, x6, x6︸ ︷︷ ︸
(4)

, x7, x8, ...).

We put X = N0 and the power set P(X) of X for the σ-algebra Σ. Define a non-singular
measurable transformation φ on N0 such that

φ−1(k(t+ 1) + t) = {k(t+ s) + i− 1 + t : 1 ≤ i ≤ s}, k = 0, 1, 2, ...,(2.2)
φ−1(k(t+ 1) + i− 1) = k(t+ s) + i− 1, 1 ≤ i ≤ t, k = 0, 1, 2, ...

If we choose s and t in such a way that their sum is always an even number, then we have

φ2(n) =



k(t+ 1) + t n = k(t+ s) + i+ t− 1, 1 ≤ i ≤ s k ∈ N0;

k(t+ 1) + t n = k(t+ s) + i− 1, 1 ≤ i ≤ t, k ∈ N0, k is odd;

k(t+ 1) + i− 1 n = k(t+ s) + i− 1, 1 ≤ i ≤ t, k ∈ N0, k is even.

(2.3)

Throughout this paper, we assume that t+ s is even. We write m({i}) := mi, i ∈ N0, for the
underlying point mass measure on X, and we suppose that each mi is strictly positive.

Proposition 2.2. The composition operator Cφ on ℓ2 defined by Cφf = f ◦ φ is unitarily
equivalent to the block matrix operator M(ζ, η), where ζ := {ζni } 1≤i≤t

0≤n<∞
and η := {ηnj } 1≤j≤s

0≤n<∞
and for each n ∈ N0

ζ
(n)
i =

√
mn(t+s)+i−1

mn(t+1)+i−1
(1 ≤ i ≤ t),

η
(n)
j =

√
mn(t+s)+j+t−1

mn(t+1)+t
(1 ≤ j ≤ s).

Proof. Let ei =
1√
mi

χi (i ∈ N0). Then {ei}i∈N0 is an orthonormal basis for ℓ2. We have

Cφej = ej ◦ φ =
1

√
mj

χφ−1{j} =
1

√
mj

∑
i∈φ−1(j)

ei
√
mi.
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Then, for each k ∈ N0, we have

Cφej =


∑

1≤i≤s

√
mk(t+s)+i−1+t

mk(t+1)+t
ek(t+s)+i−1+t j = k(t+ 1) + t;

√
mk(t+s)+i−1

mk(t+1)+i−1
ek(t+s)+i−1 j = k(t+ 1) + i− 1, 1 ≤ i ≤ t.

Now, we set weight sequences ζ := {ζni } 1≤i≤t
0≤n<∞

and η := {ηnj } 1≤j≤s
0≤n<∞

, where

ζ
(n)
i =

√
mn(t+s)+i−1

mn(t+1)+i−1
, 1 ≤ i ≤ t, 0 ≤ n < ∞,

and

η
(n)
j =

√
mn(t+s)+j+t−1

mn(t+1)+t
1 ≤ j ≤ s, 0 ≤ n < ∞.

Therefore, it is easy to check that Cφ is unitarily equivalent to the block matrix operator
M(ζ, η) with weight sequence (ζ, η). □

Remark 2.3. In Proposition 2.2, put t = 2 and s = 4. Then, Cφe0 =
√

m0
m0

e0, Cφe1 =√
m1
m1

e1, Cφe2 =
√

m2
m2

e2 +
√

m3
m2

e3 +
√

m4
m2

e4 +
√

m5
m2

e5 and · · · . Therefore, in this case, Cφ is
equivalent to the block matrix


E1

E2

E3

E4

. . .

 whereE1 := E11 =



√
m0
m0

0 0

0
√

m1
m1

0

0 0
√

m2
m2

0 0
√

m3
m2

0 0
√

m4
m2

0 0
√

m5
m2


.(2.4)

Proposition 2.4. [4] Let M(ζ, η) be a block matrix operator with weight sequence (ζ, η),
where ζ := {ζni } 1≤i≤r

0≤n<∞
and η := {ηnj } 1≤j≤s

0≤n<∞
. Then there exists a measurable transformation

φ on a σ-finite measure space (N0,P(N0),m) such that M(ζ, η) is unitarily equivalent to the
composition operator Cφ on ℓ2.

Proposition 2.5. [7] The folllowing are equivalent:

(i) Cφ is absolute-(p, r)-∗-paranormal.

(ii) (hr ◦ φ)E(hp) ≥ hp+r ◦ φ2 on S(h).

(iii) Cφ is (p, r, q)-∗-paranormal.
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Theorem 2.6. Let φ be a non-singular measurable transformation on ℓ2 as in (2.2) and let
p > 0, r ≥ 0 and q > 0. Then the following assertions are equivalent

(i) Cφ is absolute-(p, r)-∗-paranormal on ℓ2;

(ii) Cφ is (p, r, q)-∗-paranormal.

(iii) the block matrix operator M(ζ, η) as in Proposition 2.2 is absolute-(p, r)-∗-paranorma
and (p, r, q)-∗-paranormal.

(iv) (hr ◦ φ)(n)E(hp)(n) ≥ hp+r ◦ φ2(n) on S(h).

(v) the following inequality for n ∈ N0, holds(
m(φ−1(φ(n)))

mφ(n)

)r
1

m(φ−1(φ(n)))

∑
l∈φ−1(φ(n))

m(φ−1(j))p

mp
j

mj

≥

(
m(φ−1(φ2(n)))

mφ2(n)

)p+r

,(2.5)

Proof. Because of Propositions 2.4 and 2.5 we have (i), (ii), (iii) and (iv) are equivalent. Also,
by a similar argument as in the proof of [Theorem 2.1, [4]], it is easy to see that (iv) and (v)
are equivalent. □

The conditions above simplify considerably if we specialize to the case of a repeated block
Let M(ζ, η) be a block matrix operator where ζ := {ζni } 1≤i≤t

0≤n<∞
and η := {ηnj } 1≤j≤s

0≤n<∞
as

follows:
M(ζ, η) : E ≡ E1 ≡ E1 = E2 = · · ·(2.6)

ζ : ζ
(n)
i = ζi, n ∈ N0, 1 ≤ i ≤ t;

η : η
(n)
j = ηj , n ∈ N0, 1 ≤ j ≤ s.

For any n ∈ N0, let in denote the solution to the conditions 1 ≤ in ≤ t and n = k1(t+1)+in−1
for some k1 ∈ N0. Similarly, let vn satisfy 1 ≤ vn ≤ s and n = k2(t+ s) + vn − 1 + t for some
k2 ∈ N0.

Theorem 2.7. Let M(ζ, η) be as in (2.6). Then the block matrix operator M(ζ, η) is absolute-
(p, r)-∗-paranormal if and only if the following three conditions hold:
(i) if n = k(t+ s) + i− 1 + t for 1 ≤ i ≤ s, then for all 1 ≤ ij ≤ t and 1 ≤ vj ≤ s we have ∑

1≤i≤s

η2i

r ∑
j∈φ−1(φ(n))

j≡tmod(t+1)

 ∑
1≤i≤s

η2i

p(
η2vj∑

1≤i≤s η
2
i

)

+
∑

j∈φ−1(φ(n))

j ̸≡tmod(t+1)

(ζij )
2p

(
η2vj∑

1≤i≤s η
2
i

)
≥

 ∑
1≤i≤s

η2i

p+r

(2.7)
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(ii) if n = k(t+ s) + q − 1 and k is even, for 1 ≤ q ≤ t, we have

(ii− a) ζ2rq (
∑

1≤i≤s

η2i )
p ≥ (ζ2q )

p+r n ≡ t mod(t+ 1)

(ii− b) ζ2rq ζ2pin ≥ ζ2(p+r)
q n ≡ in − 1 mod(t+ 1) and 1 ≤ in ≤ t.

(iii) if n = k(r + s) + q − 1 and k is odd, then for 1 ≤ q ≤ t we have

(ii− a) ζ2rq (
∑

1≤i≤s

η2i )
p ≥ (

∑
1≤vn≤s

η2vn)
p+r n ≡ t mod(t+ 1)

(ii− b) ζ2rq ζ2pin ≥ (
∑

1≤vn≤s

η2vn)
p+r n ≡ in − 1 mod(t+ 1)with 1 ≤ in ≤ t.

Proof. First, we proof (i): since n = k(t+s)+ i−1+ t for 1 ≤ i ≤ s. Thus φ(n) = k(t+1)+ t
and φ−1(φ(n)) = {k(t+ s) + i− 1 + t : 1 ≤ i ≤ s}. By using Proposition 2.2, we have

m(φ−1(φ(n))) =
∑

1≤i≤s

mk(t+s)+i−1+t =
∑

1≤i≤s

(η
(k)
i )2mk(t+1)+t,

since for any k ∈ N0, η(k)i = ηi. So m(φ−1(φ(n))) =
∑

1≤i≤s η
2
imk(t+1)+t. Also, since in this

case φ2(n) = φ(n), therefore we have(
m(φ−1(φ(n)))

mφ(n)

)
=

(
m(φ−1(φ2(n)))

mφ2(n)

)
=

(∑
1≤i≤s η

2
imφ(n)

mφ(n)

)
=
∑

1≤i≤s

η2i .

Now, we will calculate 1
m(φ−1(φ(n)))

∑
j∈φ−1(φ(n))

m(φ−1(j))p

mp
j

mj . By using Proposition 2.2, we
deduce that

mj

m(φ−1(φ(n)))
=

η2vjmk(t+1)+t∑
1≤i≤s η

2
imk(t+1)+t

=
η2vj∑

1≤i≤s η
2
i

, 1 ≤ vj ≤ s.

In sequel, we compute
(
m(φ−1(j))

mj

)p
for j ∈ φ−1(φ(n)). To do so we consider two subcases.

Case1a: j = k1(t+1)+ t, k1 ∈ N0, then we have φ−1(j) = {k1(t+ s)+ i−1+ t : 1 ≤ i ≤ s}.
By Proposition 2.2, we have(

m(φ−1(j))

mj

)p

=

(∑
1≤i≤s η

2
imk1(t+1)+t

mk1(t+1)+t

)p

=

 ∑
1≤i≤s

η2i

p

.

Case1b: j = k1(t + 1) + ij − 1 for k1 ∈ N0 and 1 ≤ ij ≤ t. In this case we get that
φ−1(j) = k1(t+ s) + ij − 1 : 1 ≤ ij ≤ t, so Proposition 2.2 implies that(

m(φ−1(j))

mj

)p

=
(
ζ2ij

)p
.

Therefore, for n = k(t+s)+i−1+t and 1 ≤ i ≤ t, we conclude that (2.5) is equivalent to (2.7).

Now, we proof (ii): In this case n = k(t+s)+q−1 for 1 ≤ q ≤ t and k is even. By (2.2) and
(2.3), it is easy to see that φ(n) = φ2(n) = k(t+1)+ q− 1 and φ−1(φ(n)) = φ−1(φ2(n)) = n,
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by using Proposition 2.2, we get that

m(φ−1(φ(n)))

m(φ(n))
=

m(φ−1(φ2(n)))

m(φ2(n))
=

mk(t+s)+q−1

mk(t+1)+q−1
=

ζ2qmk(t+1)+q−1

mk(t+1)+q−1
= ζ2q ,

Since φ−1(φ(n)) = n for n = k(t+ s)+ q− 1, obviously m(φ−1(φ(n)))
mj

= 1 for j ∈ φ−1(φ(n)).

Now we consider two subcases for computations of
(
m(φ−1(j))

mj

)p
, j ∈ φ−1(φ(n)).

Case2a: j(= n) = k2(t+1)+ t for some k2 ∈ N0. Hence, we have φ−1(j) = {k2(t+ s)+ i−
1 + t : 1 ≤ i ≤ s}. Hence

m(φ−1(j))

mj
=

∑
1≤i≤s η

2
imk2(t+1)+t

mk2(t+1)+t
=
∑

1≤i≤s

η2i .

Case2b: j(= n) = k2(t + 1) + in − 1 for some k2 ∈ N0, with 1 ≤ in ≤ t. Obviously
φ−1(j) = {k2(t+ s) + in − 1 : 1 ≤ in ≤ t}, consequently

m(φ−1(j))

mj
=

ζ2inmk2(t+1)+vn−1

mk2(t+1)+vn−1
= ζ2in .

Thus we get that in this case (2.5) is equivalent to
ζ2rq

(∑
1≤i≤s η

2
i

)p
≥ ζ

2(p+r)
q n ≡ t, mod(t+ 1),

ζ2rq ζ2pin ≥ ζ
2(p+r)
q n ≡ in − 1, mod(t+ 1).

Finally, we proof (iii): n = k(t + s) + q − 1 for 1 ≤ q ≤ t and k is odd. By (2.2) and (2.3),
we have φ(n) = k(t + 1) + q − 1, φ−1(φ(n)) = n, φ2(n) = k(t + 1) + t and φ−1(φ2(n)) =
{k(t+ s) + vn − 1 + t : 1 ≤ vn ≤ s} by using Proposition 2.2, we get that

m(φ−1(φ(n)))

m(φ(n))
= ζ2q ,

m(φ−1(φ2(n)))

m(φ2(n))
=

∑
1≤vn≤s

η2vn

Also, by a similar argument as in the proof of (ii), we have

m(φ−1(j))

mj
=


∑

1≤i≤t η
2
i , n ≡ t, mod(t+ 1),

ζ2in n ≡ in − 1, mod(t+ 1)

Consequently, for n = k(t + s) + q − 1 where k is odd and 1 ≤ q ≤ t, we get that (2.5) is
equivalent to

ζ2rq

(∑
1≤i≤t η

2
i

)p
≥
(∑

1≤vn≤s η
2
vn

)p+r
n ≡ t, mod(t+ 1),

ζ2rq ζ2pin ≥
(∑

1≤vn≤s η
2
vn

)p+r
n ≡ in − 1, mod(t+ 1).

□
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Example 2.8. Let

E :=


c 0
0 1
0 1
0 1

 and M :=

E E
. . .

 .

Note that c is a fixed positive real number. Then some direct computations show that the
conditions for M to be absolute (p, r)-∗-paranormal in Theorem 2.7 is equivalent to the
following condition:

c2p ≥ 3p and c2(p+r) ≥ 3p+r(2.8)
Then by using (2.8) we can find c such that M is absolute-(2, 3)-∗-paranormal but it is not
absolute-(2, 4)-∗-paranormal. Namely, put c = 1.8

Example 2.9. Let

F :=



a 0 0 0
0 b 0 0
0 0 c 0
0 0 0 1
0 0 0 2
0 0 0 1
0 0 0 3
0 0 0 1


and M :=

F F
. . .

 .

where a, b, c are fixed positive real number. Hence, by using Theorem 2.7, it is easy to see
that M is absolute-(p, r)-∗-paranormal if and only if the following conditions hold:

16p + 2a2 + b2 + 9c2 ≥ 16p+1;(2.9)
a2(p+r) ≥ 16p+r;

b2(p+r) ≥ 16p+r;

c2(p+r) ≥ 16p+r.

Therefore by using (2.9), we can find a, b and c such that M is absolute-(3, 4)-∗-paranormal,
but it is not absolute-(1, 3)-∗-paranormal. Put a = 5, b = 6 and c = 4, so this yields
that the classes of absolute-(p, r)-∗-paranormal operators are distinct for p > 0 and r ≥ 0.
Also, by Theorem 2.6 we deduce that this block matrix operator can separate the classes of
(p, r, q)-∗-paranormal operators for p > 0, r ≥ 0 and q > 0.
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